Singular tuples of matrices is not a null cone (and the symmetries of algebraic varieties)

Type: Article

Publication Date: 2021-08-17

Citations: 6

DOI: https://doi.org/10.1515/crelle-2021-0044

Abstract

Abstract The following multi-determinantal algebraic variety plays a central role in algebra, algebraic geometry and computational complexity theory: <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>SING</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> {{\rm SING}_{n,m}} , consisting of all m -tuples of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> {n\times n} complex matrices which span only singular matrices. In particular, an efficient deterministic algorithm testing membership in <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>SING</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> {{\rm SING}_{n,m}} will imply super-polynomial circuit lower bounds, a holy grail of the theory of computation. A sequence of recent works suggests such efficient algorithms for memberships in a general class of algebraic varieties, namely the null cones of linear group actions. Can this be used for the problem above? Our main result is negative: <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>SING</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> {{\rm SING}_{n,m}} is not the null cone of any (reductive) group action! This stands in stark contrast to a non-commutative analog of this variety, and points to an inherent structural difficulty of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>SING</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> {{\rm SING}_{n,m}} . To prove this result, we identify precisely the group of symmetries of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>SING</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> {{\rm SING}_{n,m}} . We find this characterization, and the tools we introduce to prove it, of independent interest. Our work significantly generalizes a result of Frobenius for the special case <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>m</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {m=1} , and suggests a general method for determining the symmetries of algebraic varieties.

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ Singular tuples of matrices is not a null cone (and, the symmetries of algebraic varieties) 2019 Visu Makam
Avi Wigderson
+ Singular tuples of matrices is not a null cone (and, the symmetries of algebraic varieties) 2019 Visu Makam
Avi Wigderson
+ Singular tuples of matrices is not a null cone (and, the symmetries of algebraic varieties). 2019 Visu Makam
Avi Wigderson
+ Symbolic determinant identity testing (SDIT) is not a null cone problem; and the symmetries of algebraic varieties 2020 Visu Makam
Avi Wigderson
+ Polynomial degree bounds for matrix semi-invariants 2015 Harm Derksen
Visu Makam
+ Polynomial degree bounds for matrix semi-invariants 2015 Harm Derksen
Visu Makam
+ Canonical Forms for Matrix Tuples in Polynomial Time 2024 Youming Qiao
Xiaorui Sun
+ Counting components of the null-cone on tuples 2005 Jan Draisma
+ PDF Chat Sagbi combinatorics of maximal minors and a Sagbi algorithm 2023 Winfried Bruns
Aldo Conca
+ PDF Chat Polynomial degree bounds for matrix semi-invariants 2017 Harm Derksen
Visu Makam
+ Complexity of linear circuits and geometry 2013 Fulvio Gesmundo
Jonathan D. Hauenstein
Christian Ikenmeyer
J. M. Landsberg
+ Complexity of linear circuits and geometry 2013 Fulvio Gesmundo
Jonathan D. Hauenstein
Christian Ikenmeyer
J. M. Landsberg
+ PDF Chat Complexity column 2016 Neil Immerman
+ Computational aspects of the combinatorial Nullstellensatz method via a polynomial approach to matrix and hypermatrix algebra 2013 Edinah K. Gnang
+ Matroids and convex geometry in combinatorics and algebra 2019 Felix Gotti
+ PDF Chat The Hilbert Null-cone on Tuples of Matrices and Bilinear Forms 2006 M S Burgin
Jan Draisma
+ Constructive noncommutative rank computation is in deterministic polynomial time 2015 Gábor Ivanyos
Youming Qiao
K. V. Subrahmanyam
+ The shape of a tridiagonal pair(Algebraic combinatorics and the related areas of research) 2006 Tatsuro Ito
Paul Terwilliger
+ PDF Chat Rectangular Kronecker Coefficients and Plethysms in Geometric Complexity Theory 2016 Christian Ikenmeyer
Greta Panova
+ Matrix Canonical Forms 2014 S. Gill Williamson