Theoretical evidence of spin-orbital-entangled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>J</mml:mi><mml:mi>eff</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> state in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:mrow></mml:math> transition metal oxide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>…

Type: Article

Publication Date: 2019-10-04

Citations: 15

DOI: https://doi.org/10.1103/physrevb.100.161104

Abstract

Transition metal oxides exhibit various competing phases and exotic phenomena depending on how their reaction to the rich degeneracy of the $d$-orbital. Large spin-orbit coupling (SOC) reduces this degeneracy in a unique way by providing a spin-orbital-entangled ground state for 4$d$ and 5$d$ transition metal compounds. In particular, the spin-orbital-entangled Kramers doublet, known as the $J_{\mathbf{eff}}$=1/2 pseudospin, appears in layered iridates and $\alpha$-RuCl$_3$, manifesting a relativistic Mott insulating phase. Such entanglement, however, seems barely attainable in 3$d$ transition metal oxides, where the SOC is small and the orbital angular momentum is easily quenched. From experimental and theoretical evidence, here we report on the CuAl$_2$O$_4$ spinel as the first example of a $J_{\mathbf{eff}}$=1/2 Mott insulator in 3$d$ transition metal compounds. Based on the experimental study, including synthesis of the cubic CuAl$_2$O$_4$ single crystal, density functional theory and dynamical mean field theory calculations reveal that the $J_{\mathbf{eff}}$=1/2 state survives the competition with an orbital-momentum-quenched $S$=1/2 state. The electron-addition spectra probing unoccupied states are well described by the $j_{\mathbf{eff}}$=1/2 hole state, whereas electron-removal spectra have a rich multiplet structure. The fully relativistic entity found in CuAl$_2$O$_4$ provides new insight into the untapped regime where the spin-orbital-entangled Kramers pair coexists with strong electron correlation.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Spin-orbital-entangled $J_{\mathbf{eff}}$=1/2 state in 3$d$ transition metal oxide CuAl$_2$O$_4$ 2018 Choong H. Kim
Hwanbeom Cho
Santu Baidya
V. V. Gapontsev
S. V. Streltsov
D. I. Khomskiǐ
Je‐Geun Park
Ara Go
Hosub Jin
+ PDF Chat Spin-Orbit Coupling Controlled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>J</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:math> Electronic Ground State in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>5</mml:mn><mml:msup><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> Oxides 2017 A. E. Taylor
Stuart Calder
Ryan Morrow
Hai L. Feng
M. H. Upton
M. D. Lumsden
Kazunari Yamaura
Patrick M. Woodward
A. D. Christianson
+ PDF Chat Novel<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mi>eff</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math>Mott State Induced by Relativistic Spin-Orbit Coupling in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2008 Beom Joon Kim
Hosub Jin
S. J. Moon
J.-Y. Kim
B.-G. Park
C. S. Leem
Jaejun Yu
T. W. Noh
Changsoo Kim
S.-J. Oh
+ PDF Chat Constraints on the two-dimensional pseudospin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> Mott insulator description of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> 2022 Berend Zwartsenberg
Ryan Day
E. Razzoli
Matteo Michiardi
M. X. Na
Guoren Zhang
J. D. Denlinger
I. Vobornik
Chiara Bigi
B. J. Kim
+ PDF Chat Realization of the anisotropic compass model on the diamond lattice of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Cu</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CuAl</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> 2018 S. A. Nikolaev
I. V. Solovyev
A. N. Ignatenko
V. Yu. Irkhin
S. V. Streltsov
+ PDF Chat Spin-orbit excitations and electronic structure of the putative Kitaev magnet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mo>−</mml:mo><mml:msub><mml:mi>RuCl</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2016 Luke J. Sandilands
Yao Tian
Anjan Reijnders
Heung‐Sik Kim
K. W. Plumb
Young‐June Kim
Hae‐Young Kee
Kenneth S. Burch
+ PDF Chat Entangled tetrahedron ground state and excitations of the magnetoelectric skyrmion material<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>OSeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2014 Judit Romhányi
Jeroen van den Brink
Ioannis Rousochatzakis
+ PDF Chat Parity-Forbidden Excitations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Sr</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Cl</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>Revealed by Optical… 2001 Andreas Schumacher
J. Steven Dodge
M. A. Carnahan
Robert A. Kaindl
D. S. Chemla
L. L. Miller
+ PDF Chat Nonmagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>J</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> State and Spin-Orbit Excitations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>RuCl</mml:mi></mml:mrow><… 2021 H. Takahashi
H. Suzuki
J. Bertinshaw
Sebastian Bette
Christiane Mühle
Jürgen Nuß
Robert E. Dinnebier
A. N. Yaresko
Giniyat Khaliullin
H. Gretarsson
+ PDF Chat Emergent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>4</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> Symmetry in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>α</mml:mi><mml:mtext>−</mml:mtext><mml:msub><mml:mrow><mml:mi>ZrCl</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> and … 2018 Masahiko Yamada
Masaki Oshikawa
George Jackeli
+ PDF Chat Evidence of unconventional pairing in the quasi-two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CuIr</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">Ru</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">Te</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> superconductor 2022 Tian Shang
Y. Chen
Wenqing Xie
Dariusz Jakub Gawryluk
Ritu Gupta
R. Khasanov
Xiaoyan Zhu
H. Zhang
Z. X. Zhen
Bing Yu
+ PDF Chat Contrasting electronic states of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>RuI</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>RuCl</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2023 Lu Liu
Ke Yang
Guangyu Wang
Di Lu
Yaozhenghang Ma
Hua Wu
+ PDF Chat Interplay of electron correlations, spin-orbit couplings, and structural effects for Cu centers in the quasi-two-dimensional magnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">In</mml:mi><mml:msub><mml:mi mathvariant="normal">Cu</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">V</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msub… 2020 Ramasamy Murugesan
Mohamed S. Eldeeb
M. Yehia
B. Büchner
V. Kataev
Oleg Janson
Liviu Hozoi
+ PDF Chat Spin–Orbit-Entangled Electronic Phases in 4<i>d</i> and 5<i>d</i> Transition-Metal Compounds 2021 T. Takayama
Jiří Chaloupka
Andrew Smerald
Giniyat Khaliullin
H. Takagi
+ PDF Chat Molecular orbital polarization in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>Na</mml:mtext><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mtext>Ti</mml:mtext><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mtext>Sb</mml:mtext><mml:mn>2</mml:mn></mml:msub><mml:mtext>O</mml:mtext></mml:mrow></mml:math>: Microscopic route to metal-metal transition without spontaneous symmetry breaking 2015 Heung‐Sik Kim
Hae‐Young Kee
+ PDF Chat Spin-Orbit Coupling-Induced Magnetic Phase in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi></mml:math>-Density-Wave Phase of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>La</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Ba</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>CuO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math>… 2005 Congjun Wu
Jan Zaanen
Shengbai Zhang
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi><mml:mo>−</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="normal">RuCl</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math>: A spin-orbit assisted Mott insulator on a honeycomb lattice 2014 K. W. Plumb
J. P. Clancy
Luke J. Sandilands
V. Vijay Shankar
Yongfeng Hu
Kenneth S. Burch
Hae‐Young Kee
Young‐June Kim
+ PDF Chat Spectroscopic Evidence for Electron-Boson Coupling in Electron-Doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Sr</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>IrO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2019 Yong Hu
Xiang Chen
Shuting Peng
Christopher Lane
Matthew Matzelle
Zhongti Sun
Makoto Hashimoto
Dong-Hui Lu
Eike F. Schwier
Masashi Arita
+ PDF Chat Effect of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Cu</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math>substitution in spin-orbit coupled<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Ir</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Cu</mml:mi><… 2017 Imtiaz Noor Bhatti
R. S. Dhaka
A. K. Pramanik
+ Giant orbital polarization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Ni</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> in a square planar environment 2021 Prithwijit Mandal
Ranjan Kumar Patel
Dibyata Rout
Rajdeep Banerjee
Rabindranath Bag
Koushik Karmakar
Awadhesh Narayan
J. W. Freeland
Surjeet Singh
S. Middey

Works That Cite This (9)

Action Title Year Authors
+ PDF Chat Structural stability of CuAl<sub>2</sub>O<sub>4</sub> under pressure 2020 P. A. Agzamova
Alexei А. Belik
S. V. Streltsov
+ PDF Chat Honeycomb-Lattice Mott Insulator on Tantalum Disulphide 2020 Jinwon Lee
Kyung‐Hwan Jin
Andrei Catuneanu
Ara Go
Ji‐Won Jung
Choongjae Won
Sang-Wook Cheong
Jae-Young Kim
Feng Liu
Hae‐Young Kee
+ PDF Chat Pressure-induced transition from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mi>eff</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow /><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mrow /><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> states in <mml:math xmlns:mml="http://… 2021 Hwanbeom Cho
Choong H. Kim
Yongmoon Lee
Kazuki Komatsu
Byeong-Gwan Cho
Deok‐Yong Cho
Taehun Kim
Chaebin Kim
Younghak Kim
Tae Yeong Koo
+ PDF Chat Dynamic spin fluctuations in the frustrated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:math> -site spinel <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Cu</mml:mi><mml:msub><mml:mi>Al</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> 2020 Hwanbeom Cho
R. Nirmala
Jaehong Jeong
Peter J. Baker
Hikaru Takeda
Nobuyoshi Mera
Stephen J. Blundell
M. Takigawa
D. T. Adroja
Je‐Geun Park
+ PDF Chat Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling 2020 Dorota Gotfryd
Ekaterina M. Pärschke
Krzysztof Wohlfeld
Andrzej M. Oleś
+ PDF Chat Antiferromagnetic Kitaev interaction inJ <sub>eff</sub> = 1/2 cobalt honeycomb materials Na<sub>3</sub>Co<sub>2</sub>SbO<sub>6</sub> and Na<sub>2</sub>Co<sub>2</sub>TeO<sub>6</sub> 2021 Chaebin Kim
Jaehong Jeong
Gaoting Lin
Pyeongjae Park
Takatsugu Masuda
Shinichiro Asai
Shinichi Itoh
Heung‐Sik Kim
Haidong Zhou
Jie Ma
+ PDF Chat First-principles method justifying the Dieke diagram and beyond 2023 Katsuhiro Suzuki
Takao Kotani
Kazunori Satō
+ PDF Chat Interplay of the Jahn-Teller effect and spin-orbit coupling: The case of trigonal vibrations 2022 S. V. Streltsov
Fedor Temnikov
K. I. Кugel
D. I. Khomskiǐ
+ PDF Chat Orbital Effects in Solids: Basics, Recent Progress, and Opportunities 2020 D. I. Khomskiǐ
S. V. Streltsov

Works Cited by This (29)

Action Title Year Authors
+ PDF Chat Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates 2011 Xiangang Wan
Ari M. Turner
Ashvin Vishwanath
Sergey Y. Savrasov
+ PDF Chat Site-Selective Mott Transition in Rare-Earth-Element Nickelates 2012 Hyowon Park
Andrew J. Millis
Chris A. Marianetti
+ PDF Chat Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials 2015 Jeffrey G. Rau
Eric Kin-Ho Lee
Hae‐Young Kee
+ PDF Chat Novel<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mi>eff</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math>Mott State Induced by Relativistic Spin-Orbit Coupling in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2008 Beom Joon Kim
Hosub Jin
S. J. Moon
J.-Y. Kim
B.-G. Park
C. S. Leem
Jaejun Yu
T. W. Noh
Changsoo Kim
S.-J. Oh
+ PDF Chat Correlation Effects on 3D Topological Phases: From Bulk to Boundary 2012 Ara Go
William Witczak‐Krempa
Gun Sang Jeon
Kwon Park
Yong Baek Kim
+ PDF Chat Covalency in transition-metal oxides within all-electron dynamical mean-field theory 2014 Kristjan Haule
Turan Birol
Gabriel Kotliar
+ PDF Chat Twisted Hubbard Model for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math>: Magnetism and Possible High Temperature Superconductivity 2011 Fa Wang
T. Senthil
+ PDF Chat Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet 2014 Yong Kyun Kim
O. Krupin
Jonathan D. Denlinger
Aaron Bostwick
Eli Rotenberg
Q. Zhao
J. F. Mitchell
J. W. Allen
B. J. Kim
+ Quantum Spin Hall Effect in a Transition Metal Oxide<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Na</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2009 Atsuo Shitade
Hosho Katsura
J. Kuneš
Xiao-Liang Qi
Shoucheng Zhang
Naoto Nagaosa
+ PDF Chat Mott physics and band topology in materials with strong spin–orbit interaction 2010 D. A. Pesin
Leon Balents