A Bilinear Rubio de Francia Inequality for Arbitrary Rectangles

Type: Article

Publication Date: 2019-06-26

Citations: 0

DOI: https://doi.org/10.1093/imrn/rnz177

Abstract

Let $\mathscr{R}$ be a collection of disjoint dyadic rectangles $R$ with sides parallel to the axes, let $\pi_R$ denote the non-smooth bilinear projection onto $R$ \[ \pi_R (f,g)(x):=\iint \mathbf{1}_{R}(\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{2\pi i (\xi + \eta) x} d\xi d\eta \] and let $r>2$. We show that the bilinear Rubio de Francia operator associated to $\mathscr{R}$ given by \[ f,g \mapsto \Big(\sum_{R\in\mathscr{R}} |\pi_{R} (f,g)|^r \Big)^{1/r} \] is $L^p \times L^q \rightarrow L^s$ bounded whenever $1/p + 1/q = 1/s$, $r'<p,q<r$. This extends from squares to rectangles a previous result by the same authors, and as a corollary extends in the same way a previous result from Benea and the first author for smooth projections, albeit in a reduced range.

Locations

  • International Mathematics Research Notices - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Bilinear Rubio de Francia inequalities for collections of non-smooth squares 2017 Frédéric Bernicot
Marco Vitturi
+ PDF Chat Bilinear Rubio de Francia inequalities for collections of non-smooth squares 2019 Frédéric Bernicot
Marco Vitturi
+ PDF Chat A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES 2016 Cristina Benea
Frédéric Bernicot
+ A primer on triangle functions II 2010 Susanne Saminger‐Platz
Carlo Sempi
+ $$L^p$$ Estimates for Bilinear Generalized Radon Transforms in the Plane 2022 Allan Greenleaf
Alex Iosevich
Ben Krause
A. Liu
+ A Remark on Bilinear Square Functions 2016 Loukas Grafakos
+ Rectangle and Triangle Functions 2011 Larry C. Andrews
+ A class of rectangle functions 1948 Casper Goffman
+ PDF Chat Survey on bilinear spherical averages and associated maximal operators 2025 Tainara Borges
+ A Triangle Inequality 2022
+ Quantitative weighted estimates for Rubio de Francia's Littlewood--Paley square function 2018 Rahul Garg
Luz Roncal
Saurabh Shrivastava
+ PDF Chat Quantitative Weighted Estimates for Rubio de Francia’s Littlewood–Paley Square Function 2019 Rahul Garg
Luz Roncal
Saurabh Shrivastava
+ PDF Chat A Cauchy-Schwarz type inequality for bilinear integrals on positive measures 2005 Nils Ackermann
+ TWO–DIMENSIONAL BILINEAR INEQUALITY FOR RECTANGULAR HARDY OPERATOR AND NON–FACTORIZABLE WEIGHTS 2023 Richik Sengupta
Elena Ushakova
+ A CLASS OF TRIANGLE-FUNCTIONS (I) 1932 J. Hodgkinson
+ Sparse bounds for the bilinear spherical maximal function 2022 Tainara Borges
Benjamin R. Foster
Yumeng Ou
Jill Pipher
Zirui Zhou
+ A Refinement on the Franel Inequality 1999 Wei Shangrong Yang Bicheng
+ PDF Chat A class of bilinear forms 1959 Howard Osborn
+ PDF Chat A Class of Bilinear Forms 1959 Howard Osborn
+ A Triangle Inequality 1979 M. S. Klamkin

Works That Cite This (0)

Action Title Year Authors