A longitudinal framework for predicting nonresponse in panel surveys

Type: Preprint

Publication Date: 2019-09-29

Citations: 1

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ A Longitudinal Framework for Predicting Nonresponse in Panel Surveys 2019 Christoph Kern
Bernd Weiß
Jan-Philipp Kolb
+ Validation and Generalizability of Machine Learning Prediction Models on Attrition in Longitudinal Studies 2021 Kristin Jankowsky
Ulrich Schroeders
+ PDF Chat Using Double Machine Learning to Understand Nonresponse in the Recruitment of a Mixed-Mode Online Panel 2022 Barbara Felderer
Jannis Kueck
Martin Spindler
+ PDF Chat Analyzing nonresponse in longitudinal surveys using Bayesian additive regression trees: A nonparametric event history analysis 2020 S. A. Zinn
Timo Gnambs
+ Big Data meets Causal Survey Research: Understanding Nonresponse in the Recruitment of a Mixed-mode Online Panel 2021 Barbara Felderer
Jannis Kueck
Martin Spindler
+ Big Data meets Causal Survey Research: Understanding Nonresponse in the Recruitment of a Mixed-mode Online Panel 2021 Barbara Felderer
Jannis Kueck
Martin Spindler
+ PDF Chat Analyzing Nonresponse in Longitudinal Surveys Using Bayesian Additive Regression Trees: A Nonparametric Event History Analysis 2020 S. A. Zinn
Timo Gnambs
+ Predictive Modeling with Psychological Panel Data 2022 Florian Pargent
Johannes Albert-von der Gönna
+ Judgment Post-Stratication with Machine Learning Techniques: Adjusting for Missing Data in Surveys and Data Mining 2013 Tian Chen
+ PDF Chat An Introduction to Machine Learning Methods for Survey Researchers 2018 Trent D. Buskirk
Antje Kirchner
Adam Eck
Curtis S. Signorino
+ Assessing the accuracy of response propensities in longitudinal studies 2012 Ian Plewis
Sosthenes Ketende
Lisa Calderwood
+ PDF Chat Predictive Modeling With Psychological Panel Data 2018 Florian Pargent
Johannes Albert-von der Gönna
+ PDF Chat On the (Mis)Use of Machine Learning with Panel Data 2024 Augusto Cerqua
Marco Letta
Gabriele Pinto
+ Variable selection and estimation for longitudinal survey data 2014 Li Wang
Suojin Wang
Guannan Wang
+ PDF Chat Using machine learning to analyze longitudinal data: A tutorial guide and best‐practice recommendations for social science researchers 2022 Abhishek Sheetal
Zhou Jiang
Lee Di Milia
+ Modelling Longitudinal Survey Response: The Experience of the HILDA Survey 2006 Nicole Watson
Mark Wooden
+ Using process data to predict attrition from a panel survey: a case study 2005 Femke De Keulenaer
+ PDF Chat Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies 2017 Ian Plewis
Natalie Shlomo
+ PDF Chat Using LASSO to Model Interactions and Nonlinearities in Survey Data 2018 Curtis S. Signorino
Antje Kirchner
+ An Assessment of Attrition in a Multi-Wave Panel of Households 1989 David A. Hensher