Cameron–Liebler sets of k-spaces in $${{\mathrm{PG}}}(n,q)$$

Type: Article

Publication Date: 2018-11-19

Citations: 14

DOI: https://doi.org/10.1007/s10623-018-0583-1

Locations

  • Ghent University Academic Bibliography (Ghent University) - View - PDF
  • Designs Codes and Cryptography - View

Similar Works

Action Title Year Authors
+ Cameron-Liebler sets of k-spaces in PG(n,q) 2018 Aart Blokhuis
Maarten De Boeck
Jozefien D’haeseleer
+ PDF Chat Correction to: Cameron–Liebler sets of k-spaces in $${{\,\mathrm{PG}\,}}(n,q)$$ 2021 A. Blokhuis
Maarten De Boeck
Jozefien D’haeseleer
+ PDF Chat Cameron-Liebler $k$-sets in $\mathrm{AG}(n,q)$ 2021 Jozefien D’haeseleer
Ferdinand Ihringer
Jonathan Mannaert
Leo Storme
+ The Cameron–Liebler problem for sets 2015 Maarten De Boeck
Leo Storme
Andrea Švob
+ PDF Chat On two non-existence results for Cameron-Liebler $k$-sets in $\mathrm{PG}(n,q)$ 2024 Jan De Beule
Jonathan Mannaert
Leo Storme
+ Cameron-Liebler $k$-sets in $\text{AG}(n,q)$ 2020 Jozefien D’haeseleer
Ferdinand Ihringer
Jonathan Mannaert
Leo Storme
+ PDF Chat Cameron–Liebler k-sets in subspaces and non-existence conditions 2022 Jan De Beule
Jonathan Mannaert
Leo Storme
+ Equivalent definitions for (degree one) Cameron–Liebler classes of generators in finite classical polar spaces 2019 Maarten De Boeck
Jozefien D’haeseleer
+ A modular equality for Cameron-Liebler line classes in projective and affine spaces of odd dimension 2021 Jan De Beule
Jonathan Mannaert
+ PDF Chat Классы Камерона --- Либлера прямых в $\mathrm{PG}(n,5)$ 2018 Ilia Matkin
+ A note on Cameron - Liebler line classes in PG(n,4) 2012 Alexander L. Gavrilyuk
I. Yu. Mogilnykh
+ A note on Cameron - Liebler line classes in PG(n,4) 2012 Alexander L. Gavrilyuk
I. Yu. Mogilnykh
+ Cameron–Liebler line classes in $$PG(n,4)$$ PG ( n , 4 ) 2013 Alexander L. Gavrilyuk
I. Yu. Mogilnykh
+ PDF Chat Cameron‐Liebler line classes in PG(3, 5) 2018 Alexander L. Gavrilyuk
Ilia Matkin
+ PDF Chat A modular equality for Cameron-Liebler line classes in projective and affine spaces of odd dimension 2022 Jan De Beule
Jonathan Mannaert
+ Cameron-Liebler line classes with parameter $x=\frac{q^2-1}{2}$ 2014 Tao Feng
Koji Momihara
Qing Xiang
+ Cameron-Liebler line classes with parameter $x=\frac{q^2-1}{2}$ 2014 Tao Feng
Koji Momihara
Morgan Rodgers
Qing Xiang
Hanlin Zou
+ PDF Chat Derivation of Cameron–Liebler line classes 2017 Alexander L. Gavrilyuk
Ilia Matkin
Tim Penttila
+ Equivalent definitions for (degree one) Cameron-Liebler classes of generators in finite classical polar spaces 2019 Jozefien D’haeseleer
Maarten De Boeck
+ Equivalent definitions for (degree one) Cameron-Liebler classes of generators in finite classical polar spaces 2019 Jozefien D’haeseleer
Maarten De Boeck