$L^p$ estimates for semi-degenerate simplex multipliers

Type: Article

Publication Date: 2019-09-26

Citations: 1

DOI: https://doi.org/10.4171/rmi/1123

Abstract

Muscalu, Tao, and Thiele prove L^p estimates for the "Biest" operator defined on Schwartz functions by the map C^{1,1,1}: (f_1, f_2, f_3) \mapsto \int_{\xi_1 < \xi_2 < \xi_3} \Big[ \prod_{j=1}^3 \hat{f}_j (\xi_j) \: e^{2 \pi i x \xi_j } \Big] \,d \vec{\xi} via a time-frequency argument that produces bounds for all multipliers with non-degenerate trilinear simplex symbols. In this article we prove L^p estimates for a pair of simplex multipliers defined on Schwartz functions by the maps \begin{align*} C^{1,1,-2}:\ & (f_1, f_2, f_3) \mapsto \int_{\xi_1 < \xi_2 < -{\xi_3}/{2}}\Big[ \prod_{j=1}^3 \hat{f}_j (\xi_j) e^{2 \pi i x \xi_j } \Big] \,d \overrightarrow{\xi} \\ C^{1,1,1,-2}:\ & (f_1, f_2, f_3, f_4) \mapsto \int_{\xi_1 < \xi_2 < \xi_3 < -{\xi_4}/{2}} \Big[\prod_{j=1}^4 \hat{f}_j (\xi_j) e^{2 \pi i x \xi_j} \Big] d \overrightarrow{\xi} \end{align*} for which the non-degeneracy condition fails. Our argument combines the standard \ell^2 -based energy with an \ell^1 -based energy in order to enable summability over various size parameters. As a consequence, we obtain that C^{1,1,-2} maps into L^p for all 1/2 < p < \infty and C^{1,1,1,-2} maps into L^p for all 1/3 < p < \infty . Both target L^p ranges are shown to be sharp.

Locations

  • Revista Matemática Iberoamericana - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ L^p Estimates for Semi-Degenerate Simplex Multipliers 2016 Robert Kesler
+ L^p Estimates for Semi-Degenerate Simplex Multipliers 2016 Robert Kesler
+ Mixed estimates for degenerate multi-linear operators associated to simplexes 2014 Robert Kesler
+ Multi-linear multipliers associated to simplexes of arbitrary length 2007 Camil Muscalu
Terence Tao
Christoph Thiele
+ Iterated trilinear Fourier integrals with arbitrary symbols 2013 Joeun Jung
+ Iterated trilinear Fourier integrals with arbitrary symbols 2013 Joeun Jung
+ Generic Multilinear Multipliers Associated to Degenerate Simplexes 2016 Robert Kesler
+ Generic Multilinear Multipliers Associated to Degenerate Simplexes 2016 Robert Kesler
+ $L^{p}$ estimates for the bilinear Hilbert transform for $1/2<p\leq2/3$: A counterexample and generalizations to non-smooth symbols 2014 Wei Dai
Guozhen Lu
+ Iterated trilinear Fourier integrals with arbitrary symbols 2017 Joeun Jung
+ L-functions on $GSp_2 \times Gl_2$ of mixed weights 2000 Siegfried Böcherer
Bernhard Heim
+ PDF Chat Estimates for unimodular Fourier multipliers on modulation spaces 2009 Akihiko Miyachi
Fabio Nicola
Silvia Rivetti
Anita Tabacco
Naohito Tomita
+ Unboundedness Theorems for Symbols Adapted to Large Subspaces 2016 Robert Kesler
+ Unboundedness Theorems for Symbols Adapted to Large Subspaces 2016 Robert Kesler
+ Multi-Linear Multipliers Associated to Simplexes of Arbitrary Length 2014 Camil Muscalu
Terence Tao
Christoph Thiele
+ L p estimates for bi-parameter and bilinear Fourier integral operators 2016 Qing Hong
Lu Zhang
+ PDF Chat Simplex Averaging Operators: Quasi-Banach and $$L^p$$-Improving Bounds in Lower Dimensions 2022 Alex Iosevich
Eyvindur A. Palsson
Sean R. Sovine
+ PDF Chat Functions of $L^{p}$-multipliers 1969 Satoru Igari
+ PDF Chat Two weight inequalities for bilinear forms 2016 Kangwei Li
+ PDF Chat $L^{p}$-multiplier theorems 1968 Walter Littman
Charles A. McCarthy
N. M. Rivière

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Singular Brascamp–Lieb: A Survey 2021 Polona Durcik
Christoph Thiele