Only Relevant Information Matters: Filtering Out Noisy Samples To Boost RL

Type: Preprint

Publication Date: 2020-07-01

Citations: 3

DOI: https://doi.org/10.24963/ijcai.2020/376

Locations

  • arXiv (Cornell University) - View - PDF
  • LillOA (UniversitĆ© de Lille (University Of Lille)) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Samples Are Useful? Not Always: denoising policy gradient updates using variance explained 2019 Yannis Flet-Berliac
Pierreā€Marie Preux
+ Rethinking Exploration for Sample-Efficient Policy Learning. 2021 WILLIAM F. WHITNEY
Michael Bloesch
Jost Tobias Springenberg
Abbas Abdolmaleki
Martin Riedmiller
+ Prioritizing Samples in Reinforcement Learning with Reducible Loss 2022 Shivakanth Sujit
Somjit Nath
Pedro H. M. Braga
Samira Ebrahimi Kahou
+ Decoupled Exploration and Exploitation Policies for Sample-Efficient Reinforcement Learning 2021 WILLIAM F. WHITNEY
Michael Bloesch
Jost Tobias Springenberg
Abbas Abdolmaleki
Kyunghyun Cho
Martin Riedmiller
+ Decoupled Exploration and Exploitation Policies for Sample-Efficient Reinforcement Learning 2021 WILLIAM F. WHITNEY
Michael Bloesch
Jost Tobias Springenberg
Abbas Abdolmaleki
Kyunghyun Cho
Martin Riedmiller
+ PDF Chat Efficient Sample Reuse in Policy Gradients with Parameter-Based Exploration 2013 Tingting Zhao
Hirotaka Hachiya
Voot Tangkaratt
Jun Morimoto
Masashi Sugiyama
+ PDF Chat Policy Gradient with Active Importance Sampling 2024 Matteo Papini
Giorgio Manganini
Alberto Maria Metelli
Marcello Restelli
+ Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration 2013 Tingting Zhao
Hirotaka Hachiya
Voot Tangkaratt
Jun Morimoto
Masashi Sugiyama
+ Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration 2013 Tingting Zhao
Hirotaka Hachiya
Masashi Sugiyama
+ Some Supervision Required: Incorporating Oracle Policies in Reinforcement Learning via Epistemic Uncertainty Metrics 2022 Jun Jet Tai
Jordan K. Terry
Mauro S. Innocente
James Brusey
Nadjim Horri
+ Local policy search with Bayesian optimization 2021 Sarah MĆ¼ller
Alexander von Rohr
Sebastian Trimpe
+ Local policy search with Bayesian optimization 2021 Sarah MĆ¼ller
Alexander von Rohr
Sebastian Trimpe
+ Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces 2019 Guy Lorberbom
Chris J. Maddison
Nicolas Heess
Tamir Hazan
Daniel Tarlow
+ Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces 2019 Guy Lorberbom
Chris J. Maddison
Nicolas Heess
Tamir Hazan
Daniel Tarlow
+ Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation 2022 Vincent Mai
Kaustubh Mani
Liam Paull
+ How to Enable Uncertainty Estimation in Proximal Policy Optimization 2022 Eugene Bykovets
Yannick Metz
Mennatallah Elā€Assady
Daniel A. Keim
Joachim M. Buhmann
+ DDPG++: Striving for Simplicity in Continuous-control Off-Policy Reinforcement Learning 2020 Rasool Fakoor
Pratik Chaudhari
Alexander J. Smola
+ The Mirage of Action-Dependent Baselines in Reinforcement Learning 2018 George Tucker
Surya Bhupatiraju
Shixiang Gu
Richard E. Turner
Zoubin Ghahramani
Sergey Levine
+ Regret Minimization Experience Replay in Off-Policy Reinforcement Learning 2021 Xuhui Liu
Zhenghai Xue
Jing-Cheng Pang
Shengyi Jiang
Feng Xu
Yang Yu
+ PDF Chat Regret Minimization Experience Replay in Off-Policy Reinforcement Learning 2021 Xuhui Liu
Zhenghai Xue
Jing-Cheng Pang
Shengyi Jiang
Feng Xu
Yang Yu