On Solutions to the Diophantine Equation M^x+ (M + 6)^y = z^2when M = 6N + 5

Type: Article

Publication Date: 2018-10-01

Citations: 1

DOI: https://doi.org/10.22457/apam.v18n2a9

Locations

  • Annals of Pure and Applied Mathematics - View

Similar Works

Action Title Year Authors
+ Solutions of the Diophantine Equations p x + (p + 1)y + (p + 2)z = M 2 for Primes p ≥ 2 when 1 ≤ x, y, z ≤ 2 2020 Nechemia Burshtein
+ On Solutions to the Diophantine Equation x^4 – y^2 = z^2 2018 Nechemia Burshtein
+ On Solutions to the Diophantine Equation x^3 – y^2 = z^2 2018 Nechemia Burshtein
+ Solutions of the Diophantine Equation px + (p+6)y = z2 when p, (p + 6) are Primes and x + y = 2, 3, 4 2018 Nechemia Burshtein
+ PDF Chat On the diophantine equation $X^2-(p^{2m}+1)Y^6=-p^{2m}$ 2010 Bo He
Alain Togbé
Pingzhi Yuan
+ On the Diophantine equation of the form 4^{x'}+(m^2-1)^x=y^2 2024 Supawadee Prugsapitak
Phitchayawee Sangjan
+ On the Diophantine equation (x m −1)/(x−1) = (y n −1)/(y−1) 2002 Yann Bugeaud
T. N. Shorey
+ All the Solutions of the Diophantine Equations p x + (p + 1)y + (p + 2)z = M3 when p is Prime and 1 ≤ x, y, z ≤ 2 2021 Nechemia Burshtein
+ On the diophantine equation $x^2+5^k17^l=y^n$ 2011 István Pink
Zsolt Rábai
+ On the Class of the Diophantine Equations 5^x + (10K + M)^y = z^2 and 5^x + 5^y = z^2 with Positive Integers x, y, z when M = 1, 3, 7, 9 2020 Nechemia Burshtein
+ A Short Note on Solutions of the Diophantine Equations 6^x + 11^y = z^2 and 6^x– 11^y = z^2 in Positive Integers x, y, z 2019 Nechemia Burshtein
+ On Solutions to the Diophantine Equation px + qy = z4 2017 Nechemia Burshtein
+ On the Exponential Diophantine Equation(x~m-1)/(x-1)=y~5 2008 Lin Mu-yuan
+ On the Diophantine Equation a^x+(a+5b)^y=z^2 2024 Rakporn Dokchan
Nopparat Panngam
+ On the Diophantine equation x2−4pm=±yn 2012 Fadwa S. Abu Muriefah
Amal Al-Rashed
+ PDF Chat On the Diophantine Equation 3x + p5y = z2 2019 Kittipong Laipaporn
Saeree Wananiyakul
Prathomjit Khachorncharoenkul
+ PDF Chat On the Diophantine equation $x(x + 1)\dotsm (x + n) + 1 = y^2$ $(17 \le n = \mbox {odd} \le 27)$ 2003 Hideo Wada
+ On the Diophantine Equation $x^{2}+5^{a}\cdot 11^{b}=y^{n} $ 2010 İsmail Naci Cangül
Musa Demi̇rci̇
Gökhan Soydan
Nikos Tzanakis
+ PDF Chat On the diophantine equation $x^2-2^m=\pm y^n$ 1997 Yann Bugeaud
+ PDF Chat On the equation \ x^y\pm y^x=\prod n_i! 2000 Florian Luca
Maurice Mignotte
Y. Arun Roy