Estimation of Wasserstein distances in the Spiked Transport Model

Type: Article

Publication Date: 2022-08-29

Citations: 52

DOI: https://doi.org/10.3150/21-bej1433

Abstract

We propose a new statistical model, the spiked transport model, which formalizes the assumption that two probability distributions differ only on a low-dimensional subspace. We study the minimax rate of estimation for the Wasserstein distance under this model and show that this low-dimensional structure can be exploited to avoid the curse of dimensionality. As a byproduct of our minimax analysis, we establish a lower bound showing that, in the absence of such structure, the plug-in estimator is nearly rate-optimal for estimating the Wasserstein distance in high dimension. We also give evidence for a statistical-computational gap and conjecture that any computationally efficient estimator is bound to suffer from the curse of dimensionality.

Locations

  • Bernoulli - View
  • DSpace@MIT (Massachusetts Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ Estimation of Wasserstein distances in the Spiked Transport Model 2019 Jonathan Niles‐Weed
Philippe Rigollet
+ PDF Chat Statistical Aspects of Wasserstein Distances 2018 Victor M. Panaretos
Yoav Zemel
+ Bounds on Wasserstein distances between continuous distributions using independent samples 2022 TamĂĄs Papp
Chris Sherlock
+ Robust Estimation under the Wasserstein Distance 2023 Sloan Nietert
Rachel Cummings
Ziv Goldfeld
+ Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis 2021 Sloan Nietert
Rachel Cummings
Ziv Goldfeld
+ Gromov-Wasserstein Distances: Entropic Regularization, Duality, and Sample Complexity 2022 Zhengxin Zhang
Ziv Goldfeld
Youssef Mroueh
Bharath K. Sriperumbudur
+ A Wasserstein index of dependence for random measures 2023 Marta Catalano
Hugo Lavenant
Antonio Lijoi
Igor PrĂŒnster
+ Faster Wasserstein Distance Estimation with the Sinkhorn Divergence 2020 LĂ©naĂŻc Chizat
Pierre Roussillon
Flavien LĂ©ger
François-Xavier Vialard
Gabriel Peyré
+ PDF Chat Distributional Matrix Completion via Nearest Neighbors in the Wasserstein Space 2024 Jacob Feitelberg
K. Choi
Anish Agarwal
Raaz Dwivedi
+ Distributional Matrix Completion via Nearest Neighbors in the Wasserstein Space 2024 Jacob Feitelberg
K. Choi
Anish Agarwal
Raaz Dwivedi
+ A Wasserstein Index of Dependence for Random Measures 2023 Marta Catalano
Hugo Lavenant
Antonio Lijoi
Igor PrĂŒnster
+ PDF Chat A Wasserstein Index of Dependence for Random Measures 2023 Marta Catalano
Hugo Lavenant
Antonio Lijoi
Igor PrĂŒnster
+ On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification 2020 Tianyi Lin
Zeyu Zheng
Elynn Chen
Marco Cuturi
Michael I. Jordan
+ On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification 2020 Tianyi Lin
Zeyu Zheng
Elynn Chen
Marco Cuturi
Michael I. Jordan
+ A Wasserstein index of dependence for random measures 2021 Marta Catalano
Hugo Lavenant
Antonio Lijoi
Igor PrĂŒnster
+ Statistical, Robustness, and Computational Guarantees for Sliced Wasserstein Distances 2022 Sloan Nietert
Ritwik Sadhu
Ziv Goldfeld
Kengo Kato
+ Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis. 2021 Sloan Nietert
Rachel Cummings
Ziv Goldfeld
+ On the Minimax Optimality of Estimating the Wasserstein Metric 2019 Tengyuan Liang
+ PDF Chat Convergence of Unadjusted Langevin in High Dimensions: Delocalization of Bias 2024 Yifan Chen
Xiaoou Cheng
Jonathan Niles‐Weed
Jonathan Weare
+ Discrete Optimal Transport with Independent Marginals is #P-Hard 2022 Bahar TaƟkesen
Soroosh Shafieezadeh-Abadeh
Daniel KĂŒhn
Karthik Natarajan