A local Langlands parameterization for generic supercuspidal representations of $p$-adic $G_2$

Type: Article

Publication Date: 2023-01-01

Citations: 2

DOI: https://doi.org/10.24033/asens.2533

Abstract

We construct a Langlands parameterization of supercuspidal representations of $G_2$ over a $p$-adic field. More precisely, for any finite extension $K / \QQ_p$ we will construct a bijection \[ \CL_g : \CA^0_g(G_2,K) \rightarrow \CG^0(G_2,K) \] from the set of generic supercuspidal representations of $G_2(K)$ to the set of irreducible continuous homomorphisms $\rho : W_K \to G_2(\CC)$ with $W_K$ the Weil group of $K$. The construction of the map is simply a matter of assembling arguments that are already in the literature, together with a previously unpublished theorem of G. Savin on exceptional theta correspondences, included as an appendix. The proof that the map is a bijection is arithmetic in nature, and specifically uses automorphy lifting theorems. These can be applied thanks to a recent result of Hundley and Liu on automorphic descent from $GL(7)$ to $G_2$.

Locations

  • Annales Scientifiques de l École Normale Supérieure - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ A local Langlands parameterization for generic supercuspidal representations of $p$-adic $G_2$ 2019 M. P. Harris
Chandrashekhar Khare
Jack A. Thorne
+ Geometric theta-lifting for the dual pair GSp_{2n}, GSO_{2m} 2008 S. E. Lysenko
+ Geometric theta-lifting for the dual pair GSp_{2n}, GSO_{2m} 2008 Sergey Lysenko
+ Correspondance de Langlands locale $p$-adique et anneaux de Kisin 2022 Pierre Colmez
Gabriel Dospinescu
Wiesława Nizioł
+ The Explicit Local Langlands Correspondence for $G_2$ 2022 Anne‐Marie Aubert
Cheng-Chiang Tsai
Yujie Xu
+ PDF Chat Dichotomy for generic supercuspidal representations of<i>G</i><sub>2</sub> 2011 Gordan Savin
Martin H. Weissman
+ PDF Chat Geometric approach to the local Jacquet-Langlands correspondence 2014 Yoichi Mieda
+ Invariant representations of GSp(2) under tensor product with a quadratic character 2010 Ping-Shun Chan
+ A new realization of the Langlands correspondence for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">PGL</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>F</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2012 Moshe Adrian
+ The unicity of types for depth-zero supercuspidal representations 2016 Peter E. Latham
+ The unicity of types for depth-zero supercuspidal representations 2016 Peter Latham
+ A new realization of the Langlands correspondence for PGL(2,F) 2012 Moshe Adrian
+ Strong local-global compatibility in the p-adic Langlands program for U(2) 2014 Przemysław Chojecki
Claus Aage Grøn Sørensen
+ PDF Chat Endoscopic lifts from PGL3 to G2 2004 Wee Teck Gan
Gordan Savin
+ To an effective local Langlands Corrspondence 2011 Colin J. Bushnell
Guy Henniart
+ To an effective local Langlands Corrspondence 2011 Colin J. Bushnell
Guy Henniart
+ The local Langlands correspondence for $\DeclareMathOperator{\GL}{GL}\GL_n$ over function fields 2021 Siyan Daniel Li-Huerta
+ On the Local Langlands Correspondences of DeBacker/Reeder and Reeder for $GL(\ell,F)$, where $\ell$ is prime 2010 Moshe Adrian
+ On the Local Langlands Correspondences of DeBacker/Reeder and Reeder for $GL(\ell,F)$, where $\ell$ is prime 2010 Moshe Adrian
+ PDF Chat Genericity of Representations of p-Adic Sp<sub>2n</sub> and Local Langlands Parameters 2011 Baiying Liu