Fast structure learning with modular regularization

Type: Preprint

Publication Date: 2017-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1706.03353

View

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Structure Regularization for Structured Prediction: Theories and Experiments 2014 Xu Sun
+ PDF Chat Structural Graphical Lasso for Learning Mouse Brain Connectivity 2015 Sen Yang
Qian Sun
Shuiwang Ji
Peter Wonka
Ian Davidson
Jieping Ye
+ Infinite Sparse Structured Factor Analysis 2017 Matthew C. Pearce
Simon R. White
+ Bayesian group latent factor analysis with structured sparsity 2014 Shiwen Zhao
Chuan Gao
Sayan Mukherjee
Barbara E. Engelhardt
+ Bayesian group factor analysis with structured sparsity 2016 Shiwen Zhao
Chuan Gao
Sayan Mukherjee
Barbara E. Engelhardt
+ Structure Learning of Latent Factors via Clique Search on Correlation Thresholded Graphs 2022 Dale S. Kim
Qing Zhou
+ PDF Chat Functional Graphical Models 2017 Xinghao Qiao
Shaojun Guo
Gareth James
+ A Unified Probabilistic Model for Learning Latent Factors and Their Connectivities from High-Dimensional Data 2018 Ricardo Pio Monti
Aapo Hyvärinen
+ A Unified Probabilistic Model for Learning Latent Factors and Their Connectivities from High-Dimensional Data 2018 Ricardo Pio Monti
Aapo Hyvärinen
+ Structural Equation Models as Computation Graphs 2019 Erik–Jan van Kesteren
Daniel L. Oberski
+ Structural Equation Models as Computation Graphs 2019 Erik–Jan van Kesteren
Daniel L. Oberski
+ Learning to Discover Graphical Model Structures 2016 Eugene Belilovsky
Kyle Kastner
Gaël Varoquaux
Matthew B. Blaschko
+ Graph-based regularization for regression problems with highly-correlated designs 2018 Yuan Li
Garvesh Raskutti
Rebecca Willett
+ Structure Learning in Graphical Modeling 2016 Mathias Drton
Marloes H. Maathuis
+ Structural Equation Modeling using Computation Graphs 2019 Erik–Jan van Kesteren
Daniel L. Oberski
+ Fast Scalable and Accurate Discovery of DAGs Using the Best Order Score Search and Grow-Shrink Trees 2023 Bryan Andrews
Joseph Ramsey
Rubén Sánchez-Romero
Jazmin Camchong
Erich Kummerfeld
+ PDF Chat Structure Learning in Graphical Modeling 2016 Mathias Drton
Marloes H. Maathuis
+ Learning to Discover Probabilistic Graphical Model Structures 2016 Eugene Belilovsky
Kyle Kastner
Gaël Varoquaux
Matthew B. Blaschko
+ Discovery of Latent Factors in High-dimensional Data Using Tensor Methods 2016 Furong Huang
+ Communication-Avoiding Optimization Methods for Massive-Scale Graphical Model Structure Learning. 2017 Penporn Koanantakool
Alnur Ali
Ariful Azad
Aydın Buluç
Dmitriy Morozov
Sang‐Yun Oh
Leonid Oliker
Katherine Yelick

Cited by (0)

Action Title Year Authors

Citing (21)

Action Title Year Authors
+ The information bottleneck method 2000 Naftali Tishby
Fernando C. N. Pereira
William Bialek
+ PDF Chat A Constrained<i>ℓ</i><sub>1</sub>Minimization Approach to Sparse Precision Matrix Estimation 2011 Tommaso Cai
Weidong Liu
Xi Luo
+ The varimax criterion for analytic rotation in factor analysis 1958 Henry F. Kaiser
+ PDF Chat A well-conditioned estimator for large-dimensional covariance matrices 2003 Olivier Ledoit
Michael Wolf
+ PDF Chat High dimensional covariance matrix estimation using a factor model 2008 Jianqing Fan
Yingying Fan
Jinchi Lv
+ PDF Chat Information-theoretic bounds on model selection for Gaussian Markov random fields 2010 Wei Wang
Martin J. Wainwright
Kannan Ramchandran
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
+ QUIC: quadratic approximation for sparse inverse covariance estimation 2014 Cho‐Jui Hsieh
Mátyás A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
+ Sparse inverse covariance estimation with the graphical lasso 2007 Jerome H. Friedman
Trevor Hastie
R. Tibshirani
+ PDF Chat OpenML 2014 Joaquin Vanschoren
Jan N. van Rijn
Bernd Bischl
Luı́s Torgo
+ PDF Chat A tutorial on spectral clustering 2007 Ulrike von Luxburg
+ BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables 2013 Cho‐Jui Hsieh
Mátyás A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
Russell A. Poldrack
+ The common information of two dependent random variables 1975 A.D. Wyner
+ Learning Gaussian Graphical Models with Observed or Latent FVSs 2013 Ying D. Liu
Alan S. Willsky
+ PDF Chat Caching Gaussians: Minimizing total correlation on the Gray-Wyner network 2016 Giel Op t VeldÉcole Polytechnique Fédérale de Lausanne
Michael Gastpar
+ PDF Chat Embracing the Blessing of Dimensionality in Factor Models 2016 Quefeng Li
Guang Cheng
Jianqing Fan
Yuyan Wang
+ Towards Optimal Sparse Inverse Covariance Selection through Non-Convex Optimization. 2017 Sidhant Misra
Marc Vuffray
Andrey Y. Lokhov
Michael Chertkov
+ Latent variable graphical model selection via convex optimization 2012 Venkat Chandrasekaran
Pablo A. Parrilo
Alan S. Willsky
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
+ Learning Latent Variable Gaussian Graphical Models 2014 Zhaoshi Meng
Brian Eriksson
Alfred O. Hero
+ High-dimensional graphs and variable selection with the Lasso 2006 Nicolai Meinshausen
Peter Bühlmann