Strong Law of Large Numbers for a Function of the Local Times of a Transient Random Walk in $${\mathbb {Z}}^d$$

Type: Article

Publication Date: 2019-08-28

Citations: 1

DOI: https://doi.org/10.1007/s10959-019-00937-6

Abstract

Abstract For an arbitrary transient random walk $$(S_n)_{n\ge 0}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>S</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math> in $${\mathbb {Z}}^d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mi>d</mml:mi></mml:msup></mml:math> , $$d\ge 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> , we prove a strong law of large numbers for the spatial sum $$\sum _{x\in {\mathbb {Z}}^d}f(l(n,x))$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mo>∑</mml:mo><mml:mrow><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mi>d</mml:mi></mml:msup></mml:mrow></mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>l</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> of a function f of the local times $$l(n,x)=\sum _{i=0}^n{\mathbb {I}}\{S_i=x\}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>l</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msubsup><mml:mo>∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow><mml:mi>n</mml:mi></mml:msubsup><mml:mi>I</mml:mi><mml:mrow><mml:mo>{</mml:mo><mml:msub><mml:mi>S</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mi>x</mml:mi><mml:mo>}</mml:mo></mml:mrow></mml:mrow></mml:math> . Particular cases are the number of visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function $$f(i)={\mathbb {I}}\{i\ge 1\}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mi>I</mml:mi><mml:mo>{</mml:mo><mml:mi>i</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo>}</mml:mo></mml:mrow></mml:math> ; $$\alpha $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> -fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to $$f(i)=i^\alpha $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mi>i</mml:mi><mml:mi>α</mml:mi></mml:msup></mml:mrow></mml:math> ; sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where $$f(i)={\mathbb {I}}\{i=j\}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mi>I</mml:mi><mml:mo>{</mml:mo><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mi>j</mml:mi><mml:mo>}</mml:mo></mml:mrow></mml:math> .

Locations

  • Journal of Theoretical Probability - View - PDF

Similar Works

Action Title Year Authors
+ Strong law of large numbers for a function of the local times of a transient random walk in $\mathbb Z^d$ 2019 I. M. Asymont
Dmitry Korshunov
+ Scaling limit of the local time of the reflected <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e35" altimg="si4.svg"><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-random walk 2019 Hui Yang
+ Strong Theorems for Random Walks and Its Local Time 1994 A. Földes
+ Moments and distribution of the local times of a transient random walk on $\Z^d$ 2007 Mathias Becker
Wolfgang König
+ PDF Chat A Local Limit Theorem for a Certain Class of Random Walks 1966 Walter A. Rosenkrantz
+ PDF Chat Strong law of large numbers for a function of the local times of a transient random walk on groups 2025 Yinshan Chang
Qinwei Chen
Meng Qian
P. Xue
+ On the local time of a recurrent random walk on ℤ² 2021 Vladyslav Bohun
Alexander Marynych
+ Moments and Distribution of the Local Times of a Transient Random Walk on ℤ d 2008 Mathias Becker
Wolfgang König
+ Bounds in the Local Limit Theorem for a Random Walk Conditioned to Stay Positive 2017 Ion Grama
Émile Le Page
+ Moments and distribution of the local time of a two-dimensional random walk 2006 Jǐŕı Černý
+ A local limit theorem for random walk maxima with heavy tails 2002 Søren Asmussen
В. В. Калашников
Dimitrios G. Konstantinides
Claudia Klüppelberg
Г. Ш. Цициашвили
+ Strong laws of large numbers for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mover accent="true"><mml:mi>ρ</mml:mi><mml:mo>˜</mml:mo></mml:mover></mml:math>-mixing random variables 2009 Yanjiao Meng
Zhengyan Lin
+ Some limit properties of local time for random walk 2006 Jiwei Wen
Yun-liang Yan
+ Strong Laws of Large Numbers for Random Walks in Random Sceneries 2007 Wensheng Wang
+ Strong Laws of Large Numbers for Random Walks in Random Sceneries 2007 Wensheng
Wang
+ The maximum of the local time of a transient random walk 2004 Pál Révész
+ PDF Chat Strong laws of large numbers for quasi-stationary random fields 1980 F. M�ricz
+ Dynamic ℤd-random walks in a random scenery: a strong law of large numbers 1999 Nadine Guillotin‐Plantard
+ Law of Large Numbers 2003 James J. Buckley
+ A limit theorem for local time and application to random sets 2014 Diffalah Laissaoui
Abdelatif Benchérif-Madani

Works That Cite This (0)

Action Title Year Authors