Towards a Goldberg–Shahidi pairing for classical groups

Type: Article

Publication Date: 2017-07-08

Citations: 0

DOI: https://doi.org/10.1515/forum-2017-0033

Abstract

Abstract Let <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> {G^{1}} be an orthogonal, symplectic or unitary group over a local field and let <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>P</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>M</m:mi> <m:mo>⁢</m:mo> <m:mi>N</m:mi> </m:mrow> </m:mrow> </m:math> {P=MN} be a maximal parabolic subgroup. Then the Levi subgroup M is the product of a group of the same type as <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> {G^{1}} and a general linear group, acting on vector spaces X and W , respectively. In this paper we decompose the unipotent radical N of P under the adjoint action of M , assuming <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mo>dim</m:mo> <m:mo>⁡</m:mo> <m:mi>W</m:mi> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mo>dim</m:mo> <m:mo>⁡</m:mo> <m:mi>X</m:mi> </m:mrow> </m:mrow> </m:math> {\dim W\leq\dim X} , excluding only the symplectic case with <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mo>dim</m:mo> <m:mo>⁡</m:mo> <m:mi>W</m:mi> </m:mrow> </m:math> {\dim W} odd. The result is a Weyl-type integration formula for N with applications to the theory of intertwining operators for parabolically induced representations of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> {G^{1}} . Namely, one obtains a bilinear pairing on matrix coefficients, in the spirit of Goldberg–Shahidi, which detects the presence of poles of these operators at 0.

Locations

  • arXiv (Cornell University) - View - PDF
  • Forum Mathematicum - View

Similar Works

Action Title Year Authors
+ Towards a Goldberg-Shahidi pairing for classical groups 2016 Arnab Mitra
Steven Spallone
+ Towards a Goldberg-Shahidi pairing for classical groups 2016 Arnab Mitra
Steven Spallone
+ A Goldberg-Shahidi pairing for classical groups 2016 Arnab Mitra
Steven Spallone
+ PDF Chat On finite subgroups of the classical groups 2015 Michael J. Collins
+ Maximal subgroups of classical groups in dimensions 16 and 17 2017 Daniel P. Rogers
+ PDF Chat Group theory 1974 Abdus Salam
+ PDF Chat Sur les extensions à groupe de Galois <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>A</mml:mi> <mml:mn>4</mml:mn> </mml:msub></mml:math> 1983 Jean Cougnard
+ PDF Chat Constructing Maximal Subgroups of Classical Groups 2005 Derek F. Holt
Colva M. Roney‐Dougal
+ A generalized Weil representation for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi mathvariant="italic">SL</mml:mi><mml:mo>∗</mml:mo></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>A</mml:mi><mml:mi>m</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msub><mml:… 2009 Luis Gutiérrez Frez
+ A GUIDE TO QUANTUM GROUPS 1997 Timothy J. Hodges
+ PDF Chat Square integrable representations and a Plancherel theorem for parabolic subgroups 1978 Frederick W. Keene
+ PDF Chat Irreducible representations of unipotent subgroups of symplectic and unitary groups defined over rings 2016 Fernando Szechtman
+ The Langlands dual and unitary dual of quasi-split 𝑃𝐺𝑆𝑂₈^{𝐸} 2020 Caihua Luo
+ The Norm correspondence for unipotent radicals in classical groups 2016 Arnab Mitra
Steven Spallone
+ PDF Chat Permanent groups 1972 LeRoy B. Beasley
Larry J. Cummings
+ On the Product Functor on Inner forms of the General Linear Group Over A Non-Archimedean Local Field 2024 Kei Yuen Chan
+ Orthogonal groups 1985 R. P. Burn
+ Orthogonal Groups 1979 Morton L. Curtis
+ Closed left ideal decompositions of G*1 2017 Garith John Botha
+ On typical representations for depth-zero components of split classical groups 2018 Amiya Kumar Mondal
Santosh Nadimpalli

Works That Cite This (0)

Action Title Year Authors