Practical Deep Learning with Bayesian Principles

Type: Article

Publication Date: 2019-01-01

Citations: 96

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Practical Deep Learning with Bayesian Principles 2019 Kazuki Osawa
Siddharth Swaroop
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
Mohammad Emtiyaz Khan
+ BayesAdapter: Being Bayesian, Inexpensively and Robustly, via Bayesian Fine-tuning 2021 Zhijie Deng
Xiao Yang
Hao Zhang
Yinpeng Dong
Jun Zhu
+ Bayesian Neural Networks: Essentials 2021 Daniel T. Chang
+ The Case for Bayesian Deep Learning 2020 Andrew Gordon Wilson
+ BayesAdapter: Being Bayesian, Inexpensively and Reliably, via Bayesian Fine-tuning 2020 Zhijie Deng
Jun Zhu
+ Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference 2015 Yarin Gal
Zoubin Ghahramani
+ Bayesian Hypernetworks 2017 David Krueger
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
Aaron Courville
+ Bayesian Hypernetworks 2017 David Krueger
Chin‐Wei Huang
Riashat Islam
Ryan C. Turner
Alexandre Lacoste
Aaron Courville
+ PDF Chat Gradient-free variational learning with conditional mixture networks 2024 Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeffrey Beck
Christopher L. Buckley
+ PDF Chat Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users 2022 Laurent Valentin Jospin
Hamid Laga
Farid Boussaïd
Wray Buntine
Mohammed Bennamoun
+ How Good is the Bayes Posterior in Deep Neural Networks Really 2020 Florian Wenzel
Kevin A. Roth
Bastiaan S. Veeling
Jakub Świątkowski
Linh Tran
Stephan Mandt
Jasper Snoek
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
+ Transformers Can Do Bayesian Inference 2021 Samuel Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
+ Bayesian Deep Learning and a Probabilistic Perspective of Generalization 2020 Andrew Gordon Wilson
Pavel Izmailov
+ Bayesian Deep Learning and a Probabilistic Perspective of Generalization 2020 Andrew Gordon Wilson
Pavel Izmailov
+ Bayesian Deep Learning and a Probabilistic Perspective of Generalization 2020 Andrew Gordon Wilson
Pavel Izmailov
+ How Good is the Bayes Posterior in Deep Neural Networks Really? 2020 Florian Wenzel
Kevin A. Roth
Bastiaan S. Veeling
Jakub Świątkowski
Linh M. Tran
Stephan Mandt
Jasper Snoek
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
+ Noisy Natural Gradient as Variational Inference 2017 Guodong Zhang
Shengyang Sun
David Duvenaud
Roger Grosse
+ Noisy Natural Gradient as Variational Inference 2017 Guodong Zhang
Shengyang Sun
David Duvenaud
Roger Grosse
+ What Are Bayesian Neural Network Posteriors Really Like 2021 Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
Andrew Gordon Wilson
+ Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam 2018 Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Lin Wu
Yarin Gal
Akash Srivastava

Works Cited by This (0)

Action Title Year Authors