Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
,
Siddharth Swaroop
,
Mohammad Emtiyaz Khan
,
Anirudh Jain
,
Runa Eschenhagen
,
Richard E. Turner
,
Rio Yokota
Type:
Article
Publication Date:
2019-01-01
Citations:
96
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Practical Deep Learning with Bayesian Principles
2019
Kazuki Osawa
Siddharth Swaroop
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
Mohammad Emtiyaz Khan
+
BayesAdapter: Being Bayesian, Inexpensively and Robustly, via Bayesian Fine-tuning
2021
Zhijie Deng
Xiao Yang
Hao Zhang
Yinpeng Dong
Jun Zhu
+
Bayesian Neural Networks: Essentials
2021
Daniel T. Chang
+
The Case for Bayesian Deep Learning
2020
Andrew Gordon Wilson
+
BayesAdapter: Being Bayesian, Inexpensively and Reliably, via Bayesian Fine-tuning
2020
Zhijie Deng
Jun Zhu
+
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
2015
Yarin Gal
Zoubin Ghahramani
+
Bayesian Hypernetworks
2017
David Krueger
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
Aaron Courville
+
Bayesian Hypernetworks
2017
David Krueger
Chin‐Wei Huang
Riashat Islam
Ryan C. Turner
Alexandre Lacoste
Aaron Courville
+
PDF
Chat
Gradient-free variational learning with conditional mixture networks
2024
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeffrey Beck
Christopher L. Buckley
+
PDF
Chat
Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users
2022
Laurent Valentin Jospin
Hamid Laga
Farid Boussaïd
Wray Buntine
Mohammed Bennamoun
+
How Good is the Bayes Posterior in Deep Neural Networks Really
2020
Florian Wenzel
Kevin A. Roth
Bastiaan S. Veeling
Jakub Świątkowski
Linh Tran
Stephan Mandt
Jasper Snoek
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
+
Transformers Can Do Bayesian Inference
2021
Samuel Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
+
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
2020
Andrew Gordon Wilson
Pavel Izmailov
+
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
2020
Andrew Gordon Wilson
Pavel Izmailov
+
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
2020
Andrew Gordon Wilson
Pavel Izmailov
+
How Good is the Bayes Posterior in Deep Neural Networks Really?
2020
Florian Wenzel
Kevin A. Roth
Bastiaan S. Veeling
Jakub Świątkowski
Linh M. Tran
Stephan Mandt
Jasper Snoek
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
+
Noisy Natural Gradient as Variational Inference
2017
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger Grosse
+
Noisy Natural Gradient as Variational Inference
2017
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger Grosse
+
What Are Bayesian Neural Network Posteriors Really Like
2021
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
Andrew Gordon Wilson
+
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
2018
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Lin Wu
Yarin Gal
Akash Srivastava
Works That Cite This (80)
Action
Title
Year
Authors
+
PDF
Chat
A survey on epistemic (model) uncertainty in supervised learning: Recent advances and applications
2021
Xinlei Zhou
Han Liu
Farhad Pourpanah
Tieyong Zeng
Xizhao Wang
+
Entropy from Machine Learning
2019
Romuald A. Janik
+
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
2020
Sebastian W. Ober
Laurence Aitchison
+
Learning under Model Misspecification: Applications to Variational and Ensemble methods
2019
Andrés R. Masegosa
+
Unsupervised Knowledge-Transfer for Learned Image Reconstruction
2021
Riccardo Barbano
Željko Kereta
Andreas Hauptmann
Simon Arridge
Bangti Jin
+
PDF
Chat
Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep Gradient Descent
2021
Riccardo Barbano
Chen Zhang
Simon Arridge
Bangti Jin
+
PDF
Chat
Priors in Bayesian Deep Learning: A Review
2022
Vincent Fortuin
+
PDF
Chat
Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users
2022
Laurent Valentin Jospin
Hamid Laga
Farid Boussaïd
Wray Buntine
Mohammed Bennamoun
+
Non-exponentially weighted aggregation: regret bounds for unbounded loss functions
2020
Pierre Alquier
+
Probabilistic partition of unity networks: clustering based deep approximation
2021
Nathaniel Trask
Mamikon Gulian
Andy Huang
Kookjin Lee
Works Cited by This (0)
Action
Title
Year
Authors