Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension d=4

Type: Article

Publication Date: 2019-01-01

Citations: 37

DOI: https://doi.org/10.24033/asens.2385

Locations

  • Annales Scientifiques de l École Normale Supérieure - View

Similar Works

Action Title Year Authors
+ PDF Chat Global well-posedness and scattering of 3D defocusing, cubic Schrödinger equation 2023 Jia Shen
Yifei Wu
+ Global Well-Posedness and Scattering of the Two Dimensional Cubic Focusing Nonlinear Schr\"Odinger System 2024 Haewon Yoon
Xing Cheng
Zihua Guo
Gyeongha Hwang
+ Global well-posedness and scattering for the defocusing quintic nonlinear Schrödinger equation in two dimensions 2018 Xueying Yu
+ PDF Chat Lecture notes : Global Well-posedness, scattering and blow up for the energy-critical, focusing, non-linear Schrödinger and wave equations 2010 Carlos E. Kenig
+ Sharp Global Well-Posedness for the Cubic Nonlinear Schrödinger Equation with Third Order Dispersion 2024 Xavier Carvajal
Mahendra Panthee
+ Global analysis of the defocusing cubic wave equation in dimension 3 2008 Los Angeles
+ Global well-posedness for the Cubic Dirac equation in the critical space 2014 Ioan Bejenaru
+ Global well - posedness for the cubic wave equation in three dimensions 2014 Benjamin Dodson
+ Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥ 3 2007 Alexandru D. Ionescu
Carlos E. Kenig
+ Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth order in dimensions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>d</mml:mi><mml:mo>⩾</mml:mo><mml:mn>9</mml:mn></mml:math> 2011 Changxing Miao
Guixiang Xu
Lifeng Zhao
+ Global well-posedness for the defocusing, cubic, nonlinear Schrodinger equation when n = 3 via a linear-nonlinear decomposition 2009 Benjamin Dodson
+ The cubic fourth-order Schrodinger equation 2008 Benoît Pausader
+ Global well - posedness and scattering for the focusing, energy - critical nonlinear Schrödinger problem in dimension $d = 4$ for initial data below a ground state threshold 2014 Benjamin Dodson
+ Global Well-posedness for the Defocusing, Quintic Nonlinear Schrödinger Equation in One Dimension for Low Regularity Data 2011 Benjamin Dodson
+ Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition 2012 Benjamin Dodson
+ PDF Chat Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d=2 2016 Benjamin Dodson
+ Global well-posedness and scattering for a class of nonlinear Dunkl–Schrödinger equations 2009 Hatem Mejjaolı
+ PDF Chat Global well-posedness and scattering of the (4+1)-dimensional Maxwell-Klein-Gordon equation 2016 Sung‐Jin Oh
Daniel Tataru
+ Global well-posedness for the Sobolev critical nonlinear Schrödinger system in four space dimensions 2023 Takayoshi Ogawa
Shun Tsuhara
+ Global Well-posedness and Scattering for the Defocusing Cubic nonlinear Schrödinger equation in Four Dimensions 2011 Monica Vişan

Works That Cite This (37)

Action Title Year Authors
+ Dynamics of the Non-radial Energy-critical Inhomogeneous NLS 2024 Carlos M. Guzmán
Chengbin Xu
+ PDF Chat Well-posedness for energy-critical nonlinear Schrödinger equation on waveguide manifold 2020 Xing Cheng
Zehua Zhao
Jiqiang Zheng
+ Global Well-Posedness and Scattering for Fourth-Order Schrödinger Equations on Waveguide Manifolds 2024 Xueying Yu
Haitian Yue
Zehua Zhao
+ Profile decomposition and scattering for general nonlinear Schrödinger equations 2024 Thomas Duyckaerts
Phan van Tin
+ PDF Chat Large Global Solutions for the Energy-Critical Nonlinear Schrödinger Equation 2023 Ruobing Bai
Jia Shen
Yifei Wu
+ On blow up for a class of radial Hartree type equations 2023 Shumao Wang
+ On long time behavior of the focusing energy-critical NLS on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:mi mathvariant="double-struck">T</mml:mi></mml:math> via semivirial-vanishing geometry 2023 Yongming Luo
+ Global Well-posedness and scattering for fourth-order Schrödinger equations on waveguide manifolds 2021 Xueying Yu
Haitian Yue
Zehua Zhao
+ PDF Chat Global wellposedness for the energy-critical Zakharov system below the ground state 2021 Timothy Candy
Sebastian Herr
Kenji Nakanishi
+ PDF Chat Sharp scattering for the cubic-quintic nonlinear Schrödinger equation in the focusing-focusing regime 2022 Yongming Luo

Works Cited by This (0)

Action Title Year Authors