Automated brain extraction of multisequence MRI using artificial neural networks

Type: Article

Publication Date: 2019-08-12

Citations: 428

DOI: https://doi.org/10.1002/hbm.24750

Abstract

Brain extraction is a critical preprocessing step in the analysis of MRI neuroimaging studies and influences the accuracy of downstream analyses. The majority of brain extraction algorithms are, however, optimized for processing healthy brains and thus frequently fail in the presence of pathologically altered brain or when applied to heterogeneous MRI datasets. Here we introduce a new, rigorously validated algorithm (termed HD-BET) relying on artificial neural networks that aims to overcome these limitations. We demonstrate that HD-BET outperforms six popular, publicly available brain extraction algorithms in several large-scale neuroimaging datasets, including one from a prospective multicentric trial in neuro-oncology, yielding state-of-the-art performance with median improvements of +1.16 to +2.11 points for the DICE coefficient and -0.66 to -2.51 mm for the Hausdorff distance. Importantly, the HD-BET algorithm shows robust performance in the presence of pathology or treatment-induced tissue alterations, is applicable to a broad range of MRI sequence types and is not influenced by variations in MRI hardware and acquisition parameters encountered in both research and clinical practice. For broader accessibility our HD-BET prediction algorithm is made freely available (http://www.neuroAI-HD.org) and may become an essential component for robust, automated, high-throughput processing of MRI neuroimaging data.

Locations

  • Human Brain Mapping - View - PDF
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Deepbet: Fast brain extraction of T1-weighted MRI using Convolutional Neural Networks 2023 L. Fisch
Stefan Zumdick
Carlotta Barkhau
Daniel Emden
Jan Ernsting
Ramona Leenings
Kelvin Sarink
Nils R. Winter
Benjamin Risse
Udo Dannlowski
+ SAM vs BET: A Comparative Study for Brain Extraction and Segmentation of Magnetic Resonance Images using Deep Learning 2023 Sovesh Mohapatra
Advait Gosai
Gottfried Schlaug
+ PDF Chat Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques 2024 Mohammad Imran Hossain
Muhammad Zain Amin
Daniel Tweneboah Anyimadu
Taofik Ahmed Suleiman
+ Towards fully automated deep-learning-based brain tumor segmentation: is brain extraction still necessary? 2022 Bruno Machado Pacheco
Guilherme de Souza e Cassia
Danilo Silva
+ PDF Chat MULTI-MODAL SEGMENTATION OF 3D BRAIN SCANS USING NEURAL NETWORKS 2020 Jonathan Zopes
+ PDF Chat Deep learning-based brain segmentation model performance validation with clinical radiotherapy CT 2024 Selena Huisman
Matteo Maspero
M.E.P. Philippens
Joost J.C. Verhoeff
Szabolcs DĂĄvid
+ k-strip: A novel segmentation algorithm in k-space for the application of skull stripping 2022 Moritz Rempe
Florian Mentzel
Kelsey L. Pomykala
Johannes Haubold
Felix Nensa
Kevin Kröninger
Jan Egger
Jens Kleesiek
+ Raidionics: an open software for pre- and postoperative central nervous system tumor segmentation and standardized reporting 2023 David Bouget
Demah Alsinan
Valeria Gaitan
Ragnhild Holden Helland
André Pedersen
Ole Solheim
Ingerid Reinertsen
+ PDF Chat Multi-Modal Segmentation of 3D Brain Scans Using Neural Networks 2021 Jonathan Zopes
Moritz Platscher
Silvio Paganucci
Christian Federau
+ PDF Chat A review of handcrafted and deep radiomics in neurological diseases: transitioning from oncology to clinical neuroimaging 2024 Elizaveta Lavrova
Henry C. Woodruff
Hamza Khan
Éric Salmon
Philippe Lambin
Christophe Phillips
+ Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets 2022 Benjamin Billot
Colin Magdamo
Steven E. Arnold
Sudeshna Das
Juan. E. Iglesias
+ Training of a Skull-Stripping Neural Network with efficient data augmentation. 2018 Gabriele Valvano
Nicola Martini
Andrea Leo
Gianmarco Santini
Daniele Della Latta
Emiliano Ricciardi
Dante Chiappino
+ The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. 2024 Ahmed W. Moawad
Anastasia Janas
Ujjwal Baid
Divya Ramakrishnan
Rachit Saluja
Nader Ashraf
Leon Jekel
Raisa Amiruddin
Maruf Adewole
Jake Albrecht
+ Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets 2023 Benjamin Billot
Colin Magdamo
You Cheng
Steven E. Arnold
Sudeshna Das
Juan Eugenio Iglesias
+ PDF Chat Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting 2022 David Bouget
André Pedersen
Asgeir Store Jakola
Vasileios K. Kavouridis
Kyrre E. Emblem
Roelant S. Eijgelaar
Ivar Kommers
Hilko Ardon
Frederik Barkhof
Lorenzo Bello
+ Training of a Skull-Stripping Neural Network with efficient data augmentation 2018 Gabriele Valvano
Nicola Martini
Andrea Leo
Gianmarco Santini
Daniele Della Latta
Emiliano Ricciardi
Dante Chiappino
+ PDF Chat deepbet: Fast brain extraction of T1-weighted MRI using Convolutional Neural Networks 2024 L. Fisch
Stefan Zumdick
Carlotta Barkhau
Daniel Emden
Jan Ernsting
Ramona Leenings
Kelvin Sarink
Nils R. Winter
Benjamin Risse
Udo Dannlowski
+ Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients 2022 Jakub Nalepa
Krzysztof Kotowski
Bartosz Machura
Szymon Adamski
Oskar BoĆŒek
Bartosz Eksner
Bartosz Kokoszka
Tomasz Pekala
Mateusz Radom
Marek Strzelczak
+ PDF Chat CompNet: Complementary Segmentation Network for Brain MRI Extraction 2018 Raunak Dey
Hong Yi
+ Convolutional Neural Networks for Skull-stripping in Brain MR Imaging using Consensus-based Silver standard Masks. 2018 Oeslle Lucena
Roberto Souza
LetĂ­cia Rittner
Richard Frayne
Roberto Lotufo

Works That Cite This (45)

Action Title Year Authors
+ PDF Chat Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors 2019 Jakub Nalepa
Pablo Ribalta Lorenzo
MichaƂ Marcinkiewicz
Barbara Bobek‐Billewicz
Pawel Wawrzyniak
Maksym Walczak
MichaƂ Kawulok
Wojciech Dudzik
Krzysztof Kotowski
Izabela Burda
+ PDF Chat Test-Time Unsupervised Domain Adaptation 2020 Thomas Varsavsky
Mauricio Orbes‐Arteaga
Carole H. Sudre
Mark S. Graham
Parashkev Nachev
M. Jorge Cardoso
+ PDF Chat Learn-Explain-Reinforce: Counterfactual Reasoning and its Guidance to Reinforce an Alzheimer's Disease Diagnosis Model 2022 Kwanseok Oh
Jee Seok Yoon
Heung‐Il Suk
+ Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA 2023 Kaiyuan Yang
Fabio Musio
Yihui Ma
Norman Juchler
Johannes C. Paetzold
Rami Al-Maskari
Luciano Höher
Hongwei Li
İbrahim Ethem Hamamcı
Anjany Sekuboyina
+ PDF Chat Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients 2023 Jakub Nalepa
Krzysztof Kotowski
Bartosz Machura
Szymon Adamski
Oskar BoĆŒek
Bartosz Eksner
Bartosz Kokoszka
Tomasz Pekala
Mateusz Radom
Marek Strzelczak
+ Self-supervised Lesion Change Detection and Localisation in Longitudinal Multiple Sclerosis Brain Imaging 2021 Minh‐Son To
Ian G. Sarno
Chee Chong
Mark Jenkinson
Gustavo Carneiro
+ PDF Chat Clinically Deployed Computational Assessment of Multiple Sclerosis Lesions 2022 Siddhesh Thakur
Matthew K. Schindler
Michel Bilello
Spyridon Bakas
+ Job-VS: Joint Brain-Vessel Segmentation in TOF-MRA Images 2023 Natalia Valderrama
Ioannis Pitsiorlas
Luisa Vargas
Pablo ArbelĂĄez
MarĂ­a A. Zuluaga
+ PDF Chat ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset 2022 Moritz Roman Hernandez Petzsche
Ezequiel de la Rosa
Uta Hanning
Roland Wiest
Waldo Valenzuela
Mauricio Reyes
Maria InĂȘs Meyer
Sook‐Lei Liew
Florian Kofler
Ivan Ezhov
+ k-strip: A novel segmentation algorithm in k-space for the application of skull stripping 2023 Moritz Rempe
Florian Mentzel
Kelsey L. Pomykala
Johannes Haubold
Felix Nensa
K. Kroeninger
Jan Egger
Jens Kleesiek

Works Cited by This (22)

Action Title Year Authors
+ PDF Chat Brain tumor segmentation with Deep Neural Networks 2016 Mohammad Havaei
Axel Davy
David Warde-Farley
Antoine Biard
Aaron Courville
Yoshua Bengio
Chris Pal
Pierre-Marc Jodoin
Hugo Larochelle
+ Elastic model-based segmentation of 3-D neuroradiological data sets 1999 A. Kelemen
Gåbor J. Székely
Guido Gerig
+ Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation 2016 Konstantinos Kamnitsas
Christian Ledig
Virginia Newcombe
Joanna Simpson
Andrew D. Kane
David Menon
Daniel Rueckert
Ben Glocker
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ PDF Chat 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation 2016 ÖzgĂŒn Çiçek
Ahmed Abdulkadir
Soeren S. Lienkamp
Thomas Brox
Olaf Ronneberger
+ PDF Chat The Importance of Skip Connections in Biomedical Image Segmentation 2016 Michal Drozdzal
Eugene Vorontsov
Gabriel Chartrand
Samuel Kadoury
Chris Pal
+ CNN-based Segmentation of Medical Imaging Data. 2017 Baris Kayalibay
Grady W. Jensen
Patrick van der Smagt
+ PDF Chat Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging 2017 Seyed Sadegh Mohseni Salehi
Deniz ErdoğmuƟ
Ali Gholipour
+ PDF Chat Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations 2017 Carole H. Sudre
Wenqi Li
Tom Vercauteren
SĂ©bastien Ourselin
M. Jorge Cardoso
+ Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach 2018 Xu Han
Roland Kwitt
Stephen Aylward
Spyridon Bakas
Bjoern Menze
Alexander Asturias
Paul M. Vespa
John Van Horn
Marc Niethammer