Memory in Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity From Spatiotemporal Dynamics

Type: Article

Publication Date: 2019-06-01

Citations: 319

DOI: https://doi.org/10.1109/cvpr.2019.00937

View Chat PDF

Abstract

Natural spatiotemporal processes can be highly non-stationary in many ways, e.g. the low-level non-stationarity such as spatial correlations or temporal dependencies of local pixel values; and the high-level variations such as the accumulation, deformation or dissipation of radar echoes in precipitation forecasting. From Cramer's Decomposition, any non-stationary process can be decomposed into deterministic, time-variant polynomials, plus a zero-mean stochastic term. By applying differencing operations appropriately, we may turn time-variant polynomials into a constant, making the deterministic component predictable. However, most previous recurrent neural networks for spatiotemporal prediction do not use the differential signals effectively, and their relatively simple state transition functions prevent them from learning too complicated variations in spacetime. We propose the Memory In Memory (MIM) networks and corresponding recurrent blocks for this purpose. The MIM blocks exploit the differential signals between adjacent recurrent states to model the non-stationary and approximately stationary properties in spatiotemporal dynamics with two cascaded, self-renewed memory modules. By stacking multiple MIM blocks, we could potentially handle higher-order non-stationarity. The MIM networks achieve the state-of-the-art results on four spatiotemporal prediction tasks across both synthetic and real-world datasets. We believe that the general idea of this work can be potentially applied to other time-series forecasting tasks.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - View

Similar Works

Action Title Year Authors
+ Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics 2018 Yunbo Wang
Jianjin Zhang
Hongyu Zhu
Mingsheng Long
Jianmin Wang
Philip S. Yu
+ Recurrent Neural Networks for Dynamical Systems: Applications to Ordinary Differential Equations, Collective Motion, and Hydrological Modeling 2022 Yonggi Park
Kelum Gajamannage
Dilhani Ishanka Jayathilake
Erik M. Bollt
+ PDF Chat Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling 2023 Kelum Gajamannage
Dilhani Ishanka Jayathilake
Yonggi Park
Erik M. Bollt
+ PDF Chat xLSTM-Mixer: Multivariate Time Series Forecasting by Mixing via Scalar Memories 2024 Maurice Kraus
Felix Divo
Devendra Singh Dhami
Kristian Kersting
+ PDF Chat EgPDE-Net: Building Continuous Neural Networks for Time Series Prediction With Exogenous Variables 2024 Penglei Gao
Xi Yang
Rui Zhang
Ping Guo
John Y. Goulermas
Kaizhu Huang
+ EgPDE-Net: Building Continuous Neural Networks for Time Series Prediction with Exogenous Variables 2022 Penglei Gao
Xi Yang
Kaizhu Huang
Rui Zhang
Ping Guo
John Y. Goulermas
+ PDF Chat Deconstructing Recurrence, Attention, and Gating: Investigating the transferability of Transformers and Gated Recurrent Neural Networks in forecasting of dynamical systems 2024 Hunter Scott Heidenreich
Pantelis R. Vlachas
Petros Koumoutsakos
+ U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting 2024 Xiang Ma
Xuemei Li
L. Z. Fang
Tianlong Zhao
Caiming Zhang
+ PDF Chat SFTformer: A Spatial-Frequency-Temporal Correlation-Decoupling Transformer for Radar Echo Extrapolation 2024 Liangyu Xu
Wanxuan Lu
Hongfeng Yu
Fanglong Yao
Xian Sun
Kun Fu
+ PDF Chat Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data 2019 Patrick L. McDermott
Christopher K. Wikle
+ PDF Chat U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting 2024 Xiang Ma
Xuemei Li
L. Z. Fang
Tianlong Zhao
Caiming Zhang
+ DiffCast: A Unified Framework via Residual Diffusion for Precipitation Nowcasting 2023 Demin Yu
Xutao Li
Yunming Ye
Baoquan Zhang
Chuyao Luo
Kuai Dai
Rui Wang
Xunlai Chen
+ Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data 2017 Patrick L. McDermott
Christopher K. Wikle
+ Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data 2017 Patrick L. McDermott
Christopher K. Wikle
+ Learning the Dynamic Correlations and Mitigating Noise by Hierarchical Convolution for Long-term Sequence Forecasting 2023 Zhihao Yu
Liantao Ma
Yasha Wang
Junfeng Zhao
+ Time-Adaptive Recurrent Neural Networks 2022 Mantas Lukoševičius
Arnas Uselis
+ PDF Chat Predictability Analysis and Prediction of Discrete Weather and Financial Time-Series Data with a Hamiltonian-Based Filter-Projection Approach 2024 Henrik Kiefer
Denis Furtel
Cihan Ayaz
Anton Klimek
Jan O. Daldrop
Roland R. Netz
+ DSTP-RNN: a dual-stage two-phase attention-based recurrent neural networks for long-term and multivariate time series prediction 2019 Yeqi Liu
Chuanyang Gong
Yang Ling
Yingyi Chen
+ Higher-order Spatio-temporal Physics-incorporated Graph Neural Network for Multivariate Time Series Imputation 2024 Guojun Liang
Prayag Tiwari
Sławomir Nowaczyk
Stefan Byttner
+ PDF Chat PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from the perspective of partial differential equations 2024 Shiyi Qi
Zenglin Xu
Yiduo Li
Liangjian Wen
Qingsong Wen
Qifan Wang
Yuan Qi

Cited by (60)

Action Title Year Authors
+ PDF Chat Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning 2023 Cheng Tan
Zhangyang Gao
Lirong Wu
Yongjie Xu
Jun Xia
Siyuan Li
Stan Z. Li
+ PDF Chat MS-LSTM: Exploring spatiotemporal multiscale representations in video prediction domain 2023 Zhifeng Ma
Hao Zhang
Jie Liu
+ Real-time Linear Operator Construction and State Estimation with the Kalman Filter 2020 Tsuyoshi Ishizone
Kazuyuki Nakamura
+ SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture 2021 Kevin Trebing
Tomasz Stańczyk
Siamak Mehrkanoon
+ FitVid: Overfitting in Pixel-Level Video Prediction 2021 Mohammad Babaeizadeh
Mohammad Saffar
Suraj Nair
Sergey Levine
Chelsea Finn
Dumitru Erhan
+ PDF Chat MMINR: Multi-frame-to-Multi-frame Inference with Noise Resistance for Precipitation Nowcasting with Radar 2022 Feng Sun
Cong Bai
Yi Song
Jinglin Zhang
+ PDF Chat Modernn: Towards Fine-Grained Motion Details for Spatiotemporal Predictive Learning 2022 Zenghao Chai
Zhengzhuo Xu
Chun Yuan
+ PDF Chat Fast Fourier Inception Networks for Occluded Video Prediction 2023 Ping Li
Chenhan Zhang
Xianghua Xu
+ Taylor saves for later: disentanglement for video prediction using Taylor representation 2021 Ting Pan
Zhuqing Jiang
Jianan Han
Shiping Wen
Aidong Men
Haiying Wang
+ PDF Chat SFTformer: A Spatial-Frequency-Temporal Correlation-Decoupling Transformer for Radar Echo Extrapolation 2024 Liangyu Xu
Wanxuan Lu
Hongfeng Yu
Fanglong Yao
Xian Sun
Kun Fu
+ PDF Chat TAFormer: A Unified Target-Aware Transformer for Video and Motion Joint Prediction in Aerial Scenes 2024 Liangyu Xu
Wanxuan Lu
Hongfeng Yu
Yongqiang Mao
Hanbo Bi
Chenglong Liu
Xian Sun
Kun Fu
+ PDF Chat Latency-Aware Collaborative Perception 2022 Zixing Lei
Shunli Ren
Yue Hu
Wenjun Zhang
Siheng Chen
+ PDF Chat Taylor saves for later: Disentanglement for video prediction using Taylor representation 2021 Ting Pan
Zhuqing Jiang
Jianan Han
Shiping Wen
Aidong Men
Haiying Wang
+ PDF Chat Conditional Temporal Variational AutoEncoder for Action Video Prediction 2023 Xiaogang Xu
Yi Wang
Liwei Wang
Bei Yu
Jiaya Jia
+ Wide and Narrow: Video Prediction from Context and Motion 2021 Jae Hoon Cho
Jiyoung Lee
Changjae Oh
Wonil Song
Kwanghoon Sohn
+ Space Time Recurrent Memory Network 2021 Hung Son Nguyen
Chanho Kim
Fuxin Li
+ PDF Chat CMS-LSTM: Context Embedding and Multi-Scale Spatiotemporal Expression LSTM for Predictive Learning 2022 Zenghao Chai
Zhengzhuo Xu
Yunpeng Bail
Zhihui Lin
Chun Yuan
+ PDF Chat MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying Motions 2021 Haixu Wu
Zhiyu Yao
Jianmin Wang
Mingsheng Long
+ CMS-LSTM: Context-Embedding and Multi-Scale Spatiotemporal-Expression LSTM for Video Prediction. 2021 Zenghao Chai
Chun Yuan
Zhihui Lin
Yunpeng Bai
+ PDF Chat Space–time recurrent memory network 2024 Hung Nguyen
Chanho Kim
Fuxin Li
+ PDF Chat Augmenting physical models with deep networks for complex dynamics forecasting* 2021 Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
+ PDF Chat The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation 2023 Hugues Thomas
Jian Zhang
Timothy D. Barfoot
+ Spatiotemporal Tile-based Attention-guided LSTMs for Traffic Video Prediction 2019 Tu Dinh Nguyen
+ Disentangling Physical Dynamics From Unknown Factors for Unsupervised Video Prediction 2020 Vincent Le Guen
Nicolas Thome
+ Vid-ODE: Continuous-Time Video Generation with Neural Ordinary Differential Equation 2020 Sunghyun Park
Kangyeol Kim
Junsoo Lee
Jaegul Choo
Joonseok Lee
Sookyung Kim
Edward Choi
+ PDF Chat Deep Learning for Precipitation Nowcasting: A Survey from the Perspective of Time Series Forecasting 2024 Sojung An
Tae‐Jin Oh
Eun-Ha Sohn
Donghyun Kim
+ PDF Chat PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning 2022 Yunbo Wang
Haixu Wu
Jianjin Zhang
Zhifeng Gao
Jianmin Wang
Philip S. Yu
Mingsheng Long
+ PDF Chat SimVP: Simpler yet Better Video Prediction 2022 Zhangyang Gao
Cheng Tan
Lirong Wu
Stan Z. Li
+ PDF Chat RAP-Net: Region Attention Predictive Network for precipitation nowcasting 2022 Zheng Zhang
Chuyao Luo
Shanshan Feng
Rui Ye
Yunming Ye
Xutao Li
+ Multimodal fusion for sea level anomaly forecasting 2020 Guosong Wang
Xidong Wang
Xinrong Wu
Kexiu Liu
Yiquan Qi
Chunjian Sun
Hongli Fu
+ PDF Chat Deep Vision in Analysis and Recognition of Radar Data: Achievements, Advancements, and Challenges 2023 Qi Liu
Zhiyun Yang
Ru Ji
Yonghong Zhang
Muhammad Bilal
Xiaodong Liu
S. Vimal
Xiaolong Xu
+ PDF Chat Black-box Unsupervised Domain Adaptation with Bi-directional Atkinson-Shiffrin Memory 2023 Jingyi Zhang
Jiaxing Huang
Xueying Jiang
Shijian Lu
+ PDF Chat STConvS2S: Spatiotemporal Convolutional Sequence to Sequence Network for weather forecasting 2020 Rafaela Castro
Yania Molina Souto
Eduardo Ogasawara
Fábio Porto
Eduardo Bezerra
+ ARFA: An Asymmetric Receptive Field Autoencoder Model for Spatiotemporal Prediction 2024 Wenxuan Zhang
Xuechao Zou
Li Jie Wu
Xiaoying Wang
Jianqiang Huang
Junliang Xing
+ PDF Chat MMVP: Motion-Matrix-based Video Prediction 2023 Yiqi Zhong
Luming Liang
Ilya Zharkov
Ulrich Neumann
+ PDF Chat SwinLSTM: Improving Spatiotemporal Prediction Accuracy using Swin Transformer and LSTM 2023 Song Tang
Chuang Li
Pu Zhang
Rongnian Tang
+ PDF Chat MIMO Is All You Need:A Strong Multi-in-Multi-Out Baseline for Video Prediction 2023 Shuliang Ning
Mengcheng Lan
Yanran Li
Chaofeng Chen
Qian Chen
Xunlai Chen
Xiaoguang Han
Shuguang Cui
+ PDF Chat ModeRNN: Harnessing Spatiotemporal Mode Collapse in Unsupervised Predictive Learning 2023 Zhiyu Yao
Yunbo Wang
Haixu Wu
Jianmin Wang
Mingsheng Long
+ Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction 2020 Vincent Le Guen
Nicolas Thome
+ RAP-Net: Region Attention Predictive Network for Precipitation Nowcasting 2022 Zheng Zhang
Chuyao Luo
Shanshan Feng
Rui Ye
Yunming Ye
Xutao Li

Citing (28)

Action Title Year Authors
+ Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting 2015 Xingjian Shi
Zhourong Chen
Hao Wang
Dit‐Yan Yeung
Wai Kin Wong
Wang‐chun Woo
+ Video (language) modeling: a baseline for generative models of natural videos. 2014 Marc’Aurelio Ranzato
Arthur Szlam
Joan Bruna
Michaël Mathieu
Ronan Collobert
Sumit Chopra
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
+ Sequence to Sequence Learning with Neural Networks 2014 Ilya Sutskever
Oriol Vinyals
Quoc V. Le
+ Spatio-temporal video autoencoder with differentiable memory 2015 Viorica Pătrăucean
Ankur Handa
Roberto Cipolla
+ Generating Videos with Scene Dynamics 2016 Carl Vondrick
Hamed Pirsiavash
Antonio Torralba
+ PDF Chat Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction 2017 Junbo Zhang
Yu Zheng
Dekang Qi
+ Decomposing Motion and Content for Natural Video Sequence Prediction 2017 Ruben Villegas
Shuicheng Yan
Seunghoon Hong
Xunyu Lin
Honglak Lee
+ Unsupervised Learning of Disentangled Representations from Video 2017 Emily Denton
Vighnesh Birodkar
+ Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model 2017 Xingjian Shi
Zhihan Gao
Leonard Lausen
Hao Wang
Dit‐Yan Yeung
Wai Kin Wong
Wang‐chun Woo
+ Stochastic Adversarial Video Prediction 2018 Alex X. Lee
Richard Zhang
Frederik Ebert
Pieter Abbeel
Chelsea Finn
Sergey Levine
+ PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning 2018 Yunbo Wang
Zhifeng Gao
Mingsheng Long
Jianmin Wang
Philip S. Yu
+ Hierarchical Long-term Video Prediction without Supervision 2018 Nevan Wichers
Ruben Villegas
Dumitru Erhan
Honglak Lee
+ Generating Videos with Scene Dynamics 2016 Carl Vondrick
Hamed Pirsiavash
Antonio Torralba
+ Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks 2015 Emily Denton
Soumith Chintala
Arthur Szlam
Rob Fergus
+ Dynamic Filter Networks 2016 Bert De Brabandere
Xu Jia
Tinne Tuytelaars
Luc Van Gool
+ PDF Chat Folded Recurrent Neural Networks for Future Video Prediction 2018 Marc Oliu
Javier Selva
Sérgio Escalera
+ PDF Chat MoCoGAN: Decomposing Motion and Content for Video Generation 2018 Sergey Tulyakov
Ming-Yu Liu
Xiaodong Yang
Jan Kautz
+ Unsupervised Learning for Physical Interaction through Video Prediction 2016 Chelsea Finn
Ian J. Goodfellow
Sergey Levine
+ Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model 2017 Xingjian Shi
Zhihan Gao
Leonard Lausen
Hao Wang
Dit Yan Yeung
Wai Kin Wong
Wang Chun Woo
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
+ Decomposing Motion and Content for Natural Video Sequence Prediction 2017 Ruben Villegas
Shuicheng Yan
Seunghoon Hong
Xunyu Lin
Honglak Lee
+ Stochastic Video Generation with a Learned Prior 2018 Emily Denton
Rob Fergus
+ Deep multi-scale video prediction beyond mean square error 2015 Michaël Mathieu
Camille Couprie
Yann LeCun
+ Stochastic Adversarial Video Prediction 2018 Alex X. Lee
Richard Zhang
Frederik Ebert
Pieter Abbeel
Chelsea Finn
Sergey Levine
+ Generative Adversarial Networks 2014 Ian Goodfellow
Jean Pouget-Abadie
Mehdi Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
+ Deep generative image models using a Laplacian pyramid of adversarial networks 2015 Emily Denton
Soumith Chintala
Arthur Szlam
Rob Fergus
+ Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks 2015 Samy Bengio
Oriol Vinyals
Navdeep Jaitly
Noam Shazeer