SPACES OF SMALL METRIC COTYPE

Type: Article

Publication Date: 2010-12-01

Citations: 4

DOI: https://doi.org/10.1142/s1793525310000422

Abstract

Mendel and Naor's definition of metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz is equivalent to an ultrametric space having infimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov–Hausdorff limits, and use these facts to establish a partial converse of the main result.

Locations

  • Journal of Topology and Analysis - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Spaces of small metric cotype 2010 Ellen Veomett
Kevin Wildrick
+ Spaces of small metric cotype 2010 Ellen Veomett
Kevin Wildrick
+ PDF Chat Metric cotype 2008 Manor Mendel
Assaf Naor
+ Metric cotype 2006 Manor Mendel
Assaf Naor
+ PDF Chat Improved bounds in the metric cotype inequality for Banach spaces 2010 Ohad Giladi
Manor Mendel
Assaf Naor
+ PDF Chat Scaled Enflo type is equivalent to Rademacher type 2007 Manor Mendel
Assaf Naor
+ CHARACTERIZATIONS OF SNOWFLAKE METRIC SPACES 2005 Jeremy T. Tyson
Jang-Mei Wu
+ On the expansiveness of coarse maps between Banach spaces and geometry preservation 2023 Bruno de Mendonça Braga
Gilles Lancien
+ PDF Chat Minkowski weak embedding theorem 2024 Efstathios Konstantinos Chrontsios Garitsis
Sascha Troscheit
+ Lipschitz-free spaces, ultraproducts, and finite representability of metric spaces 2022 Luis C. García‐Lirola
G. Grelier
+ Isometric embeddings of snowflakes into finite-dimensional Banach spaces 2017 Enrico Le Donne
Tapio Rajala
Erik Walsberg
+ Isometric embeddings of snowflakes into finite-dimensional Banach spaces 2016 Enrico Le Donne
Tapio Rajala
Erik Walsberg
+ Isometric embeddings of snowflakes into finite-dimensional Banach spaces 2016 Enrico Le Donne
Tapio Rajala
Erik Walsberg
+ PDF Chat Approximating spaces of Nagata dimension zero by weighted trees 2023 Giuliano Basso
Hubert Sidler
+ Lipschitz-free spaces, ultraproducts, and finite representability of metric spaces 2023 Luis C. García‐Lirola
Guillaume Grelier
+ Extension of semi-Lipschitz maps on non-subadditive quasi-metric spaces: new tools for Artificial Intelligence 2023 Roger Arnau
Natalia Jonard-Pérez
Enrique A. Sánchez‐Pérez
+ On the Lipschitz dimension of Cheeger-Kleiner 2019 Guy C. David
+ On the Lipschitz dimension of Cheeger-Kleiner 2019 Guy C. David
+ Rough Isometries of Lipschitz Function Spaces 2007 Andreas Lochmann
+ PDF Chat A GEOMETRIC STUDY OF WASSERSTEIN SPACES: ULTRAMETRICS 2014 Benoît Kloeckner