A REMARK ON PARTIAL SUMS INVOLVING THE MÖBIUS FUNCTION

Type: Article

Publication Date: 2010-01-13

Citations: 17

DOI: https://doi.org/10.1017/s0004972709000884

Abstract

Abstract Let 〈𝒫〉⊂ N be a multiplicative subsemigroup of the natural numbers N ={1,2,3,…} generated by an arbitrary set 𝒫 of primes (finite or infinite). We give an elementary proof that the partial sums ∑ n ∈〈𝒫〉: n ≤ x ( μ ( n ))/ n are bounded in magnitude by 1. With the aid of the prime number theorem, we also show that these sums converge to ∏ p ∈𝒫 (1−(1/ p )) (the case where 𝒫 is all the primes is a well-known observation of Landau). Interestingly, this convergence holds even in the presence of nontrivial zeros and poles of the associated zeta function ζ 𝒫 ( s )≔∏ p ∈𝒫 (1−(1/ p s )) −1 on the line {Re( s )=1}. As equivalent forms of the first inequality, we have ∣∑ n ≤ x :( n , P )=1 ( μ ( n ))/ n ∣≤1, ∣∑ n ∣ N : n ≤ x ( μ ( n ))/ n ∣≤1, and ∣∑ n ≤ x ( μ ( mn ))/ n ∣≤1 for all m , x , N , P ≥1.

Locations

  • Bulletin of the Australian Mathematical Society - View - PDF
  • arXiv (Cornell University) - PDF
  • Bulletin of the Australian Mathematical Society - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ A remark on partial sums involving the Mobius function 2009 Terence Tao
+ PDF Chat Partial sums of the Möbius function 2009 K. Soundararajan
+ A note on the partial sums of $\zeta$(s) 1975 J. van deLune
H.J.J. teRiele
+ Exact formulas for partial sums of the Möbius function expressed by partial sums weighted by the Liouville lambda function 2021 Maxie D. Schmidt
+ PDF Some explicit formulas for partial sums of Möbius functions 2021 Shōta Inoue
+ Möbius function and primes: an identity factory with applications 2023 Olivier Ramaré
Sebastian Zuniga Alterman
+ The average order of the Möbius function for Beurling primes 2019 Ammar Ali Neamah
Titus Hilberdink
+ An arithmetical property of Rademacher sums 2004 Michel Weber
+ New characterizations of partial sums of the M\"obius function. 2021 Maxie D. Schmidt
+ An Elementary Proof of the Prime Number Theorem based on Möbius Function 2023 Junda Pan
+ Some explicit formulas for partial sums of Möbius functions 2018 Shōta Inoue
+ PDF The average order of the Möbius function for Beurling primes 2019 Ammar Ali Neamah
Titus Hilberdink
+ A note on the partial sum of Apostol's Möbius function 2023 D. Banerjee
Y. Fujisawa
T. Makoto Minamide
Yoshio Tanigawa
+ PDF Sums of nonnegative multiplicative functions over integers without large prime factors II 2002 Joung Min Song
+ PDF Exponential sums over Mersenne numbers 2003 William D. Banks
Alessandro Conflitti
John Friedlander
Igor E. Shparlinski
+ О НЕЛИНЕЙНОЙ СУММЕ КЛООСТЕРМАНА 2016 Королёв Максим Александрович
+ PDF Sums of nonnegative multiplicative functions over integers without large prime factors I 2001 Joung Min Song
+ On partial sums of a spectral analogue of the Möbius function 2013 Kalyan Chakraborty
Makoto Minamide
+ A Möbius inversion formula for generalized Lefschetz numbers 2003 Davide L. Ferrario
+ Partial sums of the Möbius function in arithmetic progressions assuming GRH 2013 Karin Halupczok
Benjamin Suger