GraphX$^{NET}-$ Chest X-Ray Classification Under Extreme Minimal Supervision

Type: Preprint

Publication Date: 2019-10-13

Citations: 26

Abstract

The task of classifying X-ray data is a problem of both theoretical and clinical interest. Whilst supervised deep learning methods rely upon huge amounts of labelled data, the critical problem of achieving a good classification accuracy when an extremely small amount of labelled data is available has yet to be tackled. In this work, we introduce a novel semi-supervised framework for X-ray classification which is based on a graph-based optimisation model. To the best of our knowledge, this is the first method that exploits graph-based semi-supervised learning for X-ray data classification. Furthermore, we introduce a new multi-class classification functional with carefully selected class priors which allows for a smooth solution that strengthens the synergy between the limited number of labels and the huge amount of unlabelled data. We demonstrate, through a set of numerical and visual experiments, that our method produces highly competitive results on the ChestX-ray14 data set whilst drastically reducing the need for annotated data.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ GraphX$^{NET}-$ Chest X-Ray Classification Under Extreme Minimal Supervision 2019 Angelica I. Avilés-Rivero
Nicolas Papadakis
Ruoteng Li
Philip Sellars
Qingnan Fan
Robby T. Tan
Carola‐Bibiane Schönlieb
+ The GraphNet Zoo: An All-in-One Graph Based Deep Semi-Supervised Framework for Medical Image Classification. 2020 Marianne de Vriendt
Philip Sellars
Angelica I. Aviles‐Rivero
+ The GraphNet Zoo: An All-in-One Graph Based Deep Semi-Supervised Framework for Medical Image Classification 2020 Marianne de Vriendt
Philip Sellars
Angelica I. Aviles‐Rivero
+ GraphXCOVID: Explainable Deep Graph Diffusion Pseudo-Labelling for Identifying COVID-19 on Chest X-rays 2020 Angelica I. Aviles‐Rivero
Philip Sellars
Carola‐Bibiane Schönlieb
Nicolas Papadakis
+ GraphXCOVID: Explainable Deep Graph Diffusion Pseudo-Labelling for Identifying COVID-19 on Chest X-rays 2020 Angelica I. Aviles‐Rivero
Philip Sellars
Carola‐Bibiane Schönlieb
Nicolas Papadakis
+ PDF Chat Beyond Supervised Classification: Extreme Minimal Supervision with the Graph 1-Laplacian 2019 Angelica I. Avilés-Rivero
Nicolas Papadakis
Ruoteng Li
Samar M. Alsaleh
Robby T. Tan
Carola‐Bibiane Schönlieb
+ When Labelled Data Hurts: Deep Semi-Supervised Classification with the Graph 1-Laplacian 2019 Angelica I. Avilés-Rivero
Nicolas Papadakis
Ruoteng Li
Samar M. Alsaleh
Robby T. Tan
Carola‐Bibiane Schönlieb
+ PDF Chat EVA-X: A Foundation Model for General Chest X-ray Analysis with Self-supervised Learning 2024 Jingfeng Yao
Xinggang Wang
Yuehao Song
Huangxuan Zhao
Jun Ma
Yajie Chen
W. Liu
Bo Wang
+ PDF Chat Semi-supervised Multi-task Learning with Chest X-Ray Images 2019 Abdullah-Al-Zubaer Imran
Demetri Terzopoulos
+ Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis 2022 NicolĂĄs Gaggion
Lucas Mansilla
Candelaria Mosquera
Diego H. Milone
Enzo Ferrante
+ PDF Chat Improving Anatomical Plausibility in Medical Image Segmentation via Hybrid Graph Neural Networks: Applications to Chest X-Ray Analysis 2022 NicolĂĄs Gaggion
Lucas Mansilla
Candelaria Mosquera
Diego H. Milone
Enzo Ferrante
+ Detecting Shortcuts in Medical Images -- A Case Study in Chest X-rays 2022 Amelia Jiménez-Sånchez
Dovile Juodelyte
Bethany Chamberlain
Veronika Cheplygina
+ GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays 2021 Angelica I. Avilés-Rivero
Philip Sellars
Carola‐Bibiane Schönlieb
Nicolas Papadakis
+ CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest x-ray images 2023 NicolĂĄs Gaggion
Candelaria Mosquera
Lucas Mansilla
Martina Aineseder
Diego H. Milone
Enzo Ferrante
+ Deep learning for chest X-ray analysis: A survey 2021 Erdi Çallı
Ecem Sogancioglu
Bram van Ginneken
Kicky G. van Leeuwen
Keelin Murphy
+ PDF Chat XNet: a convolutional neural network (CNN) implementation for medical x-ray image segmentation suitable for small datasets 2019 Joseph Aylett-Bullock
Carolina Cuesta-Lazaro
Arnau Quera-Bofarull
+ Analysing the effectiveness of a generative model for semi-supervised medical image segmentation 2022 Margherita Rosnati
Fabio De Sousa Ribeiro
Miguel P. Monteiro
Daniel C. Castro
Ben Glocker
+ MoCo-Pretraining Improves Representations and Transferability of Chest X-ray Models 2021 Hari Sowrirajan
Jing Yang
Andrew Y. Ng
Pranav Rajpurkar
+ Energy Models for Better Pseudo-Labels: Improving Semi-Supervised Classification with the 1-Laplacian Graph Energy 2019 Angelica I. Avilés-Rivero
Nicolas Papadakis
Ruoteng Li
Philip Sellars
Samar M. Alsaleh
Robby T. Tan
Carola‐Bibiane Schönlieb
+ PDF Chat Detecting Shortcuts in Medical Images - A Case Study in Chest X-Rays 2023 Amelia Jiménez-Sånchez
Dovile Juodelyte
Bethany Chamberlain
Veronika Cheplygina

Works That Cite This (17)

Action Title Year Authors
+ GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays 2021 Angelica I. Avilés-Rivero
Philip Sellars
Carola‐Bibiane Schönlieb
Nicolas Papadakis
+ PDF Chat Contralaterally Enhanced Networks for Thoracic Disease Detection 2021 Gangming Zhao
Chaowei Fang
Guanbin Li
Licheng Jiao
Yizhou Yu
+ PDF Chat GREN: Graph-Regularized Embedding Network for Weakly-Supervised Disease Localization in X-Ray Images 2022 Baolian Qi
Gangming Zhao
Xin Wei
Changde Du
Chengwei Pan
Yizhou Yu
Jinpeng Li
+ Contralaterally Enhanced Networks for Thoracic Disease Detection 2020 Gangming Zhao
Chaowei Fang
Guanbin Li
Licheng Jiao
Yizhou Yu
+ PDF Chat Data valuation for medical imaging using Shapley value and application to a large-scale chest X-ray dataset 2021 Siyi Tang
Amirata Ghorbani
Rikiya Yamashita
Sameer Rehman
Jared Dunnmon
James Zou
Daniel L. Rubin
+ PDF Chat Semi-Supervised Medical Image Classification With Relation-Driven Self-Ensembling Model 2020 Quande Liu
Lequan Yu
Luyang Luo
Qi Dou
Pheng‐Ann Heng
+ Federated Semi-supervised Medical Image Classification via Inter-client Relation Matching 2021 Quande Liu
Hongzheng Yang
Qi Dou
Pheng‐Ann Heng
+ ACPL: Anti-curriculum Pseudo-labelling forSemi-supervised Medical Image Classification. 2021 Fengbei Liu
Yu Tian
Yuanhong Chen
Yuyuan Liu
Vasileios Belagiannis
Gustavo Carneiro
+ The GraphNet Zoo: An All-in-One Graph Based Deep Semi-Supervised Framework for Medical Image Classification. 2020 Marianne de Vriendt
Philip Sellars
Angelica I. Aviles‐Rivero
+ GraphXCOVID: Explainable Deep Graph Diffusion Pseudo-Labelling for Identifying COVID-19 on Chest X-rays 2020 Angelica I. Aviles‐Rivero
Philip Sellars
Carola‐Bibiane Schönlieb
Nicolas Papadakis