On the global well-posedness of energy-critical Schrödinger equations in curved spaces

Type: Article

Publication Date: 2012-11-27

Citations: 62

DOI: https://doi.org/10.2140/apde.2012.5.705

Abstract

In this paper we present a method to study global regularity properties of solutions of large-data critical Schrödinger equations on certain noncompact Riemannian manifolds.We rely on concentration compactness arguments and a global Morawetz inequality adapted to the geometry of the manifold (in other words we adapt the method of Kenig and Merle to the variable coefficient case), and a good understanding of the corresponding Euclidean problem (a theorem of Colliander, Keel, Staffilani, Takaoka and Tao).As an application we prove global well-posedness and scattering in H 1 for the energy-critical defocusing initial-value problem .i@ t C g /u D ujuj 4 ; u.0/ D ;hyperbolic space ‫ވ‬ 3 .1. Introduction 705 2. Preliminaries 709 3. Proof of the main theorem 718 4. Euclidean approximations 721 5. Profile decomposition in hyperbolic spaces 725 6. Proof of Proposition 3.4 735 References 744

Locations

  • Analysis & PDE - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DSpace@MIT (Massachusetts Institute of Technology) - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On the global well-posedness of energy-critical Schrödinger equations in curved spaces 2010 Alexandru D. Ionescu
Benoît Pausader
Gigliola Staffilani
+ On the global well-posedness of energy-critical Schr\"odinger equations in curved spaces 2010 Alexandru D. Ionescu
Benoît Pausader
Gigliola Staffilani
+ Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\R^{1+4}$ 2005 E. Ryckman
Monica Vişan
+ PDF Chat Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: High dimensions 2021 Ze Li
+ Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: High dimensions 2019 Ze Li
+ PDF Chat Global well-posedness for the critical Schrödinger-Debye system 2014 Xavier Carvajal
Pedro Gamboa
+ Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds 2010 Takafumi Akahori
+ Nonlinear Schrodinger Equations at Non-Conserved Critical Regularity 2014 Jason Murphy
+ Critical well-posedness results for nonlinear Schrödinger equations on compact manifolds 2015 Nils Strunk
+ On the Schrödinger-Debye System in Compact Riemannian Manifolds 2018 Marcelo Nogueira
Mahendra Panthee
+ PDF Chat Global well-posedness, scattering and blow-up for the energy-critical, Schr\"odinger equation with general nonlinearity in the radial case 2024 Jun Wang
Zhaoyang Yin
+ Global well-posedness and scattering for the defocusing mass-critical Schrödinger equation in the three-dimensional hyperbolic space 2023 Bobby L. Wilson
Xueying Yu
+ On the nonlinear Schrödinger equation with critical source term: global well-posedness, scattering and finite time blowup 2024 Saleh S. Almuthaybiri
Radhia Ghanmi
Tarek Saanouni
+ PDF Chat Global Schrödinger maps in dimensions d>=2: Small data in the critical Sobolev spaces 2011 Ioan Bejenaru
Alexandru D. Ionescu
Carlos E. Kenig
Daniel Tataru
+ PDF Chat Global well-posedness and scattering for the defocusing, L 2 -critical, nonlinear Schrödinger equation when d = 1 2016 Benjamin Dodson
+ PDF Chat The energy-critical nonlinear Schrödinger equation on a product of spheres 2015 Sebastian Herr
Nils Strunk
+ PDF Chat On the Schrödinger-Debye system in compact Riemannian manifolds 2019 Marcelo Nogueira
Mahendra Panthee
+ PDF Chat Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R 1+4 2007 E. Ryckman
Monica Vişan
+ PDF Chat Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation 2008 Carlos E. Kenig
Frank Merle
+ Global existence and uniqueness of Schrödinger maps in dimensions $d\geq 4$ 2006 Ioan Bejenaru
Alexandru D. Ionescu
Carlos E. Kenig

Works That Cite This (61)

Action Title Year Authors
+ PDF Chat Scattering for the non-radial inhomogeneous NLS 2021 Changxing Miao
Jason Murphy
Jiqiang Zheng
+ Asymptotic stability of large energy harmonic maps under the wave map from 2D hyperbolic spaces to 2D hyperbolic spaces 2020 Ze Li
+ PDF Chat Well-posedness for energy-critical nonlinear Schrödinger equation on waveguide manifold 2020 Xing Cheng
Zehua Zhao
Jiqiang Zheng
+ Long time dynamics for defocusing cubic NLS on three dimensional product space 2020 Zehua Zhao
Jiqiang Zheng
+ PDF Chat On the nonrelativistic limit of a semilinear field equation in a homogeneous and isotropic space 2020 Makoto Nakamura
+ PDF Chat Local Smoothing Estimates for Schrödinger Equations on Hyperbolic Space 2023 Andrew Lawrie
Jonas Lührmann
Sung‐Jin Oh
Sohrab Shahshahani
+ PDF Chat On Scattering for the Quintic Defocusing Nonlinear Schrödinger Equation on R × T<sup>2</sup> 2013 Zaher Hani
Benoît Pausader
+ Asymptotic Stability of Harmonic Maps on the Hyperbolic Plane Under the Schr\"odinger Maps Evolution 2019 Andrew Lawrie
Jonas Lührmann
Sung‐Jin Oh
Sohrab Shahshahani
+ Local smoothing estimates for Schr\"odinger equations on hyperbolic space 2018 Andrew Lawrie
Jonas Lührmann
Sung‐Jin Oh
Sohrab Shahshahani
+ On long time behavior of the focusing energy-critical NLS on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:mi mathvariant="double-struck">T</mml:mi></mml:math> via semivirial-vanishing geometry 2023 Yongming Luo