A sharp counterexample to local existence of low regularity solutions to Einstein equations in wave coordinates

Type: Article

Publication Date: 2016-12-02

Citations: 17

DOI: https://doi.org/10.4007/annals.2017.185.1.6

Locations

  • Annals of Mathematics - View

Similar Works

Action Title Year Authors
+ A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations 1993 Hans Lindblad
+ Global existence of low regularity solutions of non-linear wave equations 1995 Vladimir Georgiev
Pedro Paulo Schirmer
+ A sharp counterexample to local existence of low regularity solutions to Einstein's equations in wave coordinates 2016 Boris Ettinger
Hans Lindblad
+ A sharp counterexample to local existence of low regularity solutions to Einstein's equations in wave coordinates 2016 Boris Ettinger
Hans Lindblad
+ A sharp counter example to local existence for Einstein's equations in wave coordinates 2016 Boris Ettinger
Hans Lindblad
+ GLOBAL EXISTENCE THEOREMS FOR EINSTEIN EQUATIONS IN HIGH DIMENSIONS 1996 YVONNE CHOQUET BRUHAT
+ PDF Chat Local and Global Existence Theorems for the Einstein Equations 2000 Rendall Alan D.
+ PDF Chat Counterexamples to local existence for quasilinear wave equations 1998 Hans Lindblad
+ On the regularity problems of Einstein equations 2025 Qian Wang
+ Counterexamples to local existence for nonlinear wave equations 1994 Hans Lindblad
+ An alternative proof for small energy implies regularity for radially symmetric $$(1+2)$$-dimensional wave maps 2024 N. Lai
Yi Zhou
+ Global solutions to systems of quasilinear wave equations with low regularity data and applications 2020 Dongbing Zha
Kunio Hidano
+ PDF Chat Einstein spacetimes with weak regularity 2011 Matthias Plaue
Alan D. Rendall
Mike Scherfner
+ Low regularity solutions of nonlinear wave equations 2004 Dominic Gibbeson
+ Existence and non-existence theorems in local CR geometry 2011 智紀 加治佐
+ PDF Chat A Local Compactness Theorem for Wave Propagation Problems of Classical Physics 1972 John R. Schulenberger
+ Geometric uniqueness for non-vacuum Einstein equations and applications 2011 David Parlongue
+ Geometric uniqueness for non-vacuum Einstein equations and applications 2011 David Parlongue
+ PDF Chat Local and global existence theorems for the Einstein equations 1998 Alan D. Rendall
+ PDF Chat Global Regularity of Wave Maps from R2+1 to H2. Small Energy 2004 Joachim Krieger