<i>K</i>-theoretic Schubert calculus for OG(<i>n</i>,2<i>n</i>+1) and jeu de taquin for shifted increasing tableaux

Type: Article

Publication Date: 2012-08-09

Citations: 22

DOI: https://doi.org/10.1515/crelle-2012-0071

Abstract

Abstract. We present a proof of a Littlewood–Richardson rule for the K -theory of odd orthogonal Grassmannians OG( n ,2 n +1), as conjectured by Thomas–Yong (2009). Specifically, we prove that rectification using the jeu de taquin for increasing shifted tableaux introduced there, is well-defined and gives rise to an associative product. Recently, Buch–Ravikumar (2012) proved a Pieri rule for OG( n ,2 n +1) that confirms a special case of the conjecture. Together, these results imply the aforementioned conjecture.

Locations

  • Archipelago (Université du Québec à Montréal) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ K-theoretic Schubert calculus for OG(n,2n+1) and jeu de taquin for shifted increasing tableaux 2010 Edward Clifford
Hugh Thomas
Alexander Yong
+ PDF Chat A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus 2009 Hugh Thomas
Alexander Yong
+ A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus 2007 Hugh Thomas
Alexander Yong
+ PDF Chat <i>K</i>-theory of minuscule varieties 2014 Anders Skovsted Buch
Matthew J. Samuel
+ PDF Chat Genomic tableaux 2016 Oliver Pechenik
Alexander Yong
+ PDF Chat Shifted Hecke insertion and the K-theory of OG(n,2n+ 1) 2017 Zachary Hamaker
Adam Keilthy
Rebecca Patrias
Lillian Webster
Yinuo Zhang
Shuqi Zhou
+ PDF Chat Cominuscule tableau combinatorics 2018 Hugh Thomas
Alexander Yong
+ Equivariant Littlewood-Richardson skew tableaux 2009 Victor Kreiman
+ PDF Chat A note on the push-forward formulas for even orthogonal Grassmannians 2024 Andrzej Weber
Magdalena Zielenkiewicz
+ Skein theory for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>planar algebras 2009 Scott Morrison
Emily Peters
Noah Snyder
+ PDF Chat A Generalization of the Murnaghan–Nakayama Rule for <i>K</i>-<i>k</i>-Schur and <i>k</i>-Schur Functions 2023 D.M. NGUYEN
+ Equivariant Schubert calculus and jeu de taquin 2012 Hugh Thomas
Alexander Yong
+ PDF Chat The Wronski Map and Shifted Tableau Theory 2011 Kevin Purbhoo
+ The genomic Schur function is fundamental-positive 2018 Oliver Pechenik
+ The Wronski map and shifted tableau theory 2010 Kevin Purbhoo
+ The Wronski map and shifted tableau theory 2010 Kevin Purbhoo
+ Hyperbolicity of Orthogonal Involutions (with an Appendix by Jean-Pierre Tignol) 2010 Nikita A. Karpenko
+ PDF Chat Rigged Configurations and Catalan, stretched parabolic Kostka numbers and polynomials: Polynomiality, unimodality and log-concavity 2019 Anatol N. Kirillov
+ <i>q</i>-Hecke algebras 2002 Shahn Majid
+ A Sundaram type bijection for SO(3): vacillating tableaux and pairs of standard Young tableaux and orthogonal Littlewood-Richardson tableaux 2018 Judith Braunsteiner