Sharp linear and bilinear restriction estimates for paraboloids in the cylindrically symmetric case

Type: Article

Publication Date: 2009-12-31

Citations: 39

DOI: https://doi.org/10.4171/rmi/591

Abstract

For cylindrically symmetric functions dyadically supported on the paraboloid, we obtain a family of sharp linear and bilinear adjoint restriction estimates. As corollaries, we first extend the ranges of exponents for the classical \textit{linear or bilinear adjoint restriction conjectures} for such functions and verify the \textit{linear adjoint restriction conjecture} for the paraboloid. We also interpret the restriction estimates in terms of solutions to the Schrödinger equation and establish the analogous results when the paraboloid is replaced by the lower third of the sphere.

Locations

  • Revista Matemática Iberoamericana - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ A note on the cone restriction conjecture in the cylindrically symmetric case 2007 Shuanglin Shao
+ Polar decompositions and spectral properties of linear operator pencils 2024 Slaviša V. Djordjević
Jaewoong Kim
Jasang Yoon
+ Non-asymptotic bounds for discrete prolate spheroidal wave functions analogous with prolate spheroidal wave function bounds 2022 Karim Said
A.A. Beex
+ Addition theorems for spherical waves 2011 Bernard Friedman
Joy Russek
+ Spherical transforms and Plancherel formulae 2007 Joseph A. Wolf
+ Orthogonal Polynomials and Linear Functionals 2021 Juan Carlos García-Ardila
Francisco Marcellán
Misael E. Marriaga
+ Orthogonal functions 1983 C. R. Calladine
+ Orthogonal functions 2011 Greg Gbur
+ Linear and bilinear generating functions for basic orthogonal polynomials 2004 George Gasper
Mizan Rahman
+ Multiple orthogonal polynomials on the semicircle and applications 2014 Marija P. Stanić
+ The Exponential Representation of Restricted Lorentz Operators 1997 John Snygg
+ Uniform Estimates and explicit estimates of the Prolate Spheroidal Wave Functions 2015 Aline Bonami
Abderrazek Karoui
+ Uniform Asymptotic Expansions for Ellipsoidal Wave Functions 1994 B. A. Hargrave
B. D. Sleeman
+ Orthogonal functions 2008 Włodzimierz Greblicki
M. Pawlak
+ Orthogonal functions 1950 Stefan Bergman
+ Ricci Bounds for Euclidean and Spherical Cones 2013 Kathrin Bacher
Karl‐Theodor Sturm
+ PDF Chat Bilinear Generating Functions for Orthogonal Polynomials 1999 H.T. Koelink
J. Van der Jeugt
+ PDF Chat On the orthogonal projections onto spaces of pluriharmonic functions and duality 1986 Ewa Ligocka
+ PDF Chat On a recurrence formula for elementary spherical functions on symmetric spaces and its applications to multipliers for the spherical Fourier transform. 1977 Lars Vretare
+ PDF Chat Orthogonal polynomials on the semicircle 1990 Walter Gautschi