Bertrand’s postulate for number fields

Type: Article

Publication Date: 2016-12-14

Citations: 6

DOI: https://doi.org/10.4064/cm7048-9-2016

Abstract

Consider an algebraic number field, $K$, and its ring of integers, $\mathcal {O}_K$. There exists a smallest $B_K \gt 1$ such that for any $x \gt 1$ we can find a prime ideal, $\mathfrak {p}$, in $\mathcal {O}_K$ with norm $N(\mathfrak {p})$ in the interv

Locations

  • Colloquium Mathematicum - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Bertrand's Postulate for Number Fields 2015 Thomas A. Hulse
M. Ram Murty
+ Bertrand's Postulate for Number Fields 2015 Thomas A. Hulse
M. Ram Murty
+ Extend Bertrand’s Postulate to Sums of Any Primes 2023 Phạm Minh Đức
+ Bertrand's postulate and the existence of finite fields 2020 K. Soundararajan
+ A more elementary proof of Bertrand's postulate 2013 Manoj Verma
+ Bachmann's Theory of Numbers 1894 J. W. A. Young
+ PDF Chat Algebraic certificates for Budan's theorem 2011 Daniel Bembé
+ PDF Chat Some Consequences of Bertrand's Extended Postulate 2023 Phạm Minh Đức
+ An algebraic certificate for Budan’s theorem 2010 Daniel Bembé
+ An Elementary Proof of Oppermann's Conjecture 2013 Edigles Guedes
+ An Elementary Proof of Oppermann’s Conjecture 2013 Raja Rama Gandhi
Edigles Guedes
+ Bertrand’s postulate 2001 Martin Aigner
Günter M. Ziegler
+ Bertrand’s postulate 1998 Martin Aigner
Günter M. Ziegler
+ Bertrand’s postulate 2009 Martin Aigner
Günter M. Ziegler
+ PDF Chat The generalization and proof of Bertrand's postulate 1986 George Giordano
+ RESEARCH NOTES THE GENERALIZATION AND PROOF OF BERTRAND'S POSTULATE 1987 George Giordano
+ A quantitative version of Direchlet's $S$-unit theorem in algebraic number fields 1993 L. Hajdu
+ PDF Chat A stronger Bertrand’s postulate with an application to partitions 1972 Robert E. Dressler
+ The adams conjecture 1971 Daniel Quillen
+ Postulates for the Positive Integers 1962 P. H. Diananda

Works Cited by This (0)

Action Title Year Authors