Maximum of a log-correlated Gaussian field

Type: Article

Publication Date: 2015-10-21

Citations: 58

DOI: https://doi.org/10.1214/14-aihp633

Abstract

Nous étudions le maximum d'un champ Gaussien sur $[0,1]^{\mathtt{d}}$ ($\mathtt{d}\geq1$) dont les corrélations décroissent logarithmiquement avec la distance. Kahane (Ann. Sci. Math. Québec 9 (1985) 105–150) a introduit ce modèle pour construire mathématiquement le chaos Gaussien multiplicatif dans le cas sous-critique. Duplantier, Rhodes, Sheffield et Vargas (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint, Renormalization of critical Gaussian multiplicative chaos and KPZ formula (2012) Preprint) ont étendu cette construction au cas critique et ont établi la formule KPZ. De plus, dans (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint), ils fournissent plusieurs conjectures sur le cas sur-critique ainsi que sur le maximum de ce champ Gaussien. Dans ce papier nous établissons la convergence en loi du maximum et montrons que loi limite est une variable aléatoire de Gumbel convoluée avec la limite de la martingale dérivée, résolvant ainsi la Conjecture 12 de (Critical Gaussian multiplicative chaos: Convergence of the derivative martingale (2012) Preprint).

Locations

  • Annales de l Institut Henri Poincaré Probabilités et Statistiques - View - PDF
  • arXiv (Cornell University) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ Maximum of a log-correlated Gaussian field 2013 Thomas Madaule
+ Maximum of a log-correlated Gaussian field 2013 Thomas Madaule
+ Near-maxima of the two-dimensional discrete Gaussian free field 2024 Marek Biskup
Stephan Gufler
Oren Louidor
+ Extrema of log-correlated random variables: Principles and Examples 2016 Louis‐Pierre Arguin
+ PDF Chat Maximum of the Characteristic Polynomial of the Ginibre Ensemble 2020 Gaultier Lambert
+ Gaussian multiplicative chaos through the lens of the 2D Gaussian free field 2017 Juhan Aru
+ The maximum of log-correlated Gaussian fields in random environments 2022 Florian Schweiger
Ofer Zeitouni
+ PDF Chat Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation 2014 Bertrand Duplantier
Rémi Rhodes
Scott Sheffield⋆
Vincent Vargas
+ Marches aléatoires branchantes et champs Gaussiens log-corrélés 2013 Thomas Madaule
+ Maxima of log-correlated fields: some recent developments 2021 Emma Bailey
Jonathan P. Keating
+ Renormalization of Critical Gaussian Multiplicative Chaos and KPZ formula 2012 Bertrand Duplantier
Rémi Rhodes
Scott Sheffield⋆
Vincent Vargas
+ Log-correlated Gaussian fields: an overview 2014 Bertrand Duplantier
Rémi Rhodes
Scott Sheffield⋆
Vincent Vargas
+ PDF Chat The law of large numbers for the maximum of almost Gaussian log-correlated fields coming from random matrices 2018 Gaultier Lambert
Elliot Paquette
+ PDF Chat Maxima of log-correlated fields: some recent developments* 2022 Emma Bailey
Jonathan P. Keating
+ Convergence of the centered maximum of log-correlated Gaussian fields 2017 Jian Ding
Rishideep Roy
Ofer Zeitouni
+ Convergence of the centered maximum of log-correlated Gaussian fields 2015 Jian Ding
Rishideep Roy
Ofer Zeitouni
+ PDF Chat Exponential and double exponential tails for maximum of two-dimensional discrete Gaussian free field 2012 Jian Ding
+ PDF Chat The Fyodorov–Bouchaud formula and Liouville conformal field theory 2019 Guillaume Remy
+ Discretization of the maximum for the derivatives of a random model of $\log|ζ|$ on the critical line 2019 Louis‐Pierre Arguin
Frédéric Ouimet
Christian Webb
+ Large deviations and continuity estimates for the derivative of a random model of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">log</mml:mi><mml:mo>⁡</mml:mo><mml:mo stretchy="false">|</mml:mo><mml:mi>ζ</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:math> on the critical line 2018 Louis‐Pierre Arguin
Frédéric Ouimet