Universal constraints on the location of extrema of eigenfunctions of non-local Schrödinger operators

Type: Article

Publication Date: 2019-01-17

Citations: 13

DOI: https://doi.org/10.1016/j.jde.2019.01.007

Locations

  • Journal of Differential Equations - View
  • arXiv (Cornell University) - View - PDF
  • Loughborough University Institutional Repository (Loughborough University) - View - PDF
  • Loughborough University Research Repository (Loughborough University) - View - PDF

Similar Works

Action Title Year Authors
+ Universal Constraints on the Location of Extrema of Eigenfunctions of Non-Local Schrödinger Operators 2017 Anup Biswas
József Lőrinczi
+ Universal Constraints on the Location of Extrema of Eigenfunctions of Non-Local Schr\"odinger Operators 2017 Anup Biswas
József Lőrinczi
+ Absence of Embedded Eigenvalues for Non-Local Schrödinger Operators 2021 Atsuhide Ishida
József Lőrinczi
Itaru Sasaki
+ The Shape of the Level Sets of the First Eigenfunction of a Class of Two Dimensional Schrödinger Operators 2014 Thomas Beck
+ A Faber-Krahn inequality for mixed local and nonlocal operators 2021 Stefano Biagi
Serena Dipierro
Enrico Valdinoci
Eugenio Vecchi
+ A local Faber–Krahn inequality and applications to Schrödinger equations 2018 Janna Lierl
Stefan Steinerberger
+ A Local Faber-Krahn inequality and Applications to Schrödinger's Equation 2017 Janna Lierl
Stefan Steinerberger
+ The Schrödinger eigenproblem in global spectral analysis 2019 Dževad Belkić
+ The Schrodinger eigenproblem in global spectral analysis 2004
+ PDF Chat Pointwise eigenvector estimates by landscape functions: Some variations on the Filoche–Mayboroda–van den Berg bound 2023 Delio Mugnolo
+ PDF Chat Potentials for non-local Schrödinger operators with zero eigenvalues 2022 Giacomo Ascione
József Lőrinczi
+ Pointwise eigenvector estimates by landscape functions: some variations on the Filoche--Mayboroda--van den Berg bound 2023 Delio Mugnolo
+ The Shape of the Level Sets of the First Eigenfunction of a Class of Two Dimensional Schr\"odinger Operators 2014 Thomas Beck
+ Nodal count for Dirichlet-to-Neumann operators with potential 2021 Asma Hassannezhad
David J. Sher
+ PDF Chat Local $$L^p$$ norms of Schrödinger eigenfunctions on $${\mathbb {S}}^2$$ 2021 Gabriel Rivière
+ Spectral properties of Schrödinger operators with locally $H^{-1}$ potentials 2022 Milivoje Lukić
Selim Sukhtaiev
Xingya Wang
+ Nonlocal energy functions: Gradient expansions and beyond 1996 D. J. W. Geldart
+ The shape of the level sets of the first eigenfunction of a class of two-dimensional Schrödinger operators 2017 Thomas Beck
+ Extremal properties of the first eigenvalue of Schrödinger-type operators 1998 Lino Notarantonio
+ The local Borg-Marchenko uniqueness theorem for matrix-valued Schrödinger operators with locally smooth at the right endpoint potentials 2023 Tiezheng Li
Guangsheng Wei