Model-Driven Feedforward Prediction for Manipulation of Deformable Objects

Type: Article

Publication Date: 2018-01-12

Citations: 35

DOI: https://doi.org/10.1109/tase.2017.2766228

Locations

  • IEEE Transactions on Automation Science and Engineering - View
  • arXiv (Cornell University) - View - PDF

Works That Cite This (13)

Action Title Year Authors
+ PDF Chat Recognising Known Configurations of Garments For Dual-Arm Robotic Flattening 2022 Li Duan
Gerardo Aragon-Camarasa
+ PDF Chat Static Stability of Robotic Fabric Strip Folding 2020 Vladimír Petrík
Vladimír Smutný
Ville Kyrki
+ Mesh-based Dynamics with Occlusion Reasoning for Cloth Manipulation 2022 Zixuan Huang
Xingyu Lin
David Held
+ Sequential Topological Representations for Predictive Models of Deformable Objects 2020 Rika Antonova
Anastasiia Varava
Peiyang Shi
J. Frederico Carvalho
Danica Kragić
+ PDF Chat Self-Supervised Learning of State Estimation for Manipulating Deformable Linear Objects 2020 Mengyuan Yan
Yilin Zhu
Ning Jin
Jeannette Bohg
+ A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms 2019 Oliver Kroemer
Scott Niekum
George Konidaris
+ PDF Chat Standardization of Cloth Objects and its Relevance in Robotic Manipulation 2024 Irene Garcia-Camacho
Alberta Longhini
Michael C. Welle
Guillem Alenyà
Danica Kragić
Júlia Beltrán Borràs
+ Localization and Tracking of User-Defined Points on Deformable Objects for Robotic Manipulation. 2021 Sven Dittus
Benjamin Alt
Andreas Hermann
Darko Katić
Rainer Jäkel
Jürgen Fleischer
+ ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object Manipulation 2022 Bokui Shen
Zhenyu Jiang
Christopher Choy
Silvio Savarese
Leonidas Guibas
Anima Anandkumar
Yuke Zhu
+ Deformable Linear Object Prediction Using Locally Linear Latent Dynamics 2021 Wenbo Zhang
Karl Schmeckpeper
Pratik Chaudhari
Kostas Daniilidis