Asymptotic stability for KdV solitons in weighted spaces via iteration

Type: Article

Publication Date: 2014-01-01

Citations: 1

DOI: https://doi.org/10.1215/ijm/1436275493

Abstract

In this paper, we reconsider the well-known result of Pego–Weinstein ( Comm. Math. Phys. 2 (1994) 305–349) that soliton solutions to the Korteweg–de Vries equation are asymptotically stable in exponentially weighted spaces. In this work, we recreate this result in the setting of modern well-posedness function spaces. We obtain asymptotic stability in the exponentially weighted space via an iteration argument. Our purpose here is to lay the groundwork to use the $I$-method to obtain asymptotic stability below $H^{1}$, which will be done in a second, forthcoming paper (Asymptotic stability for KdV solitons in weighted $H^{s}$ spaces. Preprint). This will be possible because the exponential approach rate obtained here will defeat the polynomial loss in traditional applications of the $I$-method ( Commun. Pure Appl. Anal. 2 (2003) 277–296, Discrete Contin. Dyn. Syst. 9 (2003) 31–54, Commun. Pure Appl. Anal. 13 (2014) 389–418).

Locations

  • Illinois Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Asymptotic Stability for KdV Solitons in Weighted Spaces via Iteration 2014 Brian Pigott
Sarah Raynor
+ Asymptotic Stability for KdV Solitons in Weighted Spaces via Iteration 2014 Brian Pigott
Sarah Raynor
+ Asymptotic Stability for KdV Solitons in Weighted $H^s$ Spaces 2014 Brian Pigott
Sarah Raynor
+ Asymptotic Stability for KdV Solitons in Weighted $H^s$ Spaces 2014 Brian Pigott
Sarah Raynor
+ PDF Chat Long-term stability for KdV solitons in weighted $H^s$ spaces 2017 Sarah Raynor
Brian Pigott
+ $L^2$-stability of solitary waves for the KdV equation via Pego and Weinstein's method 2014 Tetsu Mizumachi
Nikolay Tzvetkov
+ Low Regularity Stability for Subcritical Generalized Korteweg-de Vries Equations 2012 Brian Pigott
+ Dynamique asymptotique pour des équations de KdV généralisées L2 critiques et surcritiques 2017 Yang Lan
+ Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces 2004 Ben‐yu Guo
Li-Lian Wang
+ Asymptotic methods in soliton stability theory 1997 Dmitry E. Pelinovsky
Roger Grimshaw
+ Hyers–Ulam–Rassias Stability of Functional Equations in <i>G</i>-Normed Spaces 2023 Jung Rye Lee
Choonkil Park
Themistocles M. Rassias
+ PDF Chat Soliton Resolution for the Wadati–Konno–Ichikawa Equation with Weighted Sobolev Initial Data 2022 Zhiqiang Li
Shou‐Fu Tian
Jin‐Jie Yang
+ Asymptotics of an integral that arises in the theory of perturbations of KdV solitons 1991 L. A. Kalyakin
+ Stability of Functional Equations in Various Spaces 2017
+ Stability of functional equations in inner product spaces 2016 M‎. ‎Eshaghi Gordji
Sadegh Abbaszadeh
+ Asymptotic Stability of Solitons¶for Subcritical Generalized KdV Equations 2001 Yvan Martel
Frank Merle
+ Weighted Low-Regularity Solutions of the KP-I Initial Value Problem 2007 J. Colliander
Alexandru D. Ionescu
Carlos E. Kenig
Gigliola Staffilani
+ Asymptotic Waves for Quasilinear Systems 2010
+ Asymptotic Stability of Zakharov-Kuznetsov solitons 2015 Didier Pilod
+ PDF Chat Spectral stability and time evolution of<i>N</i>-solitons in the KdV hierarchy 2005 Yuji Kodama
Dmitry E. Pelinovsky

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Long-term stability for KdV solitons in weighted $H^s$ spaces 2017 Sarah Raynor
Brian Pigott