Prophet Secretary for Combinatorial Auctions and Matroids

Type: Book-Chapter
Publication Date: 2018-01-01
Citations: 81
DOI: https://doi.org/10.1137/1.9781611975031.46

Abstract

The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items because of their applications in mechanism design. The most important of these generalizations are to matroids and to combinatorial auctions (extends bipartite matching). Kleinberg-Weinberg [33] and Feldman et al. [17] show that for adversarial arrival order of random variables the optimal prophet inequalities give a 1/2-approximation. For many settings, however, it's conceivable that the arrival order is chosen uniformly at random, akin to the secretary problem. For such a random arrival model, we improve upon the 1/2-approximation and obtain (1 – 1/e)-approximation prophet inequalities for both matroids and combinatorial auctions. This also gives improvements to the results of Yan [45] and Esfandiari et al. [15] who worked in the special cases where we can fully control the arrival order or when there is only a single item.Our techniques are threshold based. We convert our discrete problem into a continuous setting and then give a generic template on how to dynamically adjust these thresholds to lower bound the expected total welfare.

Locations

  • arXiv (Cornell University)
  • Society for Industrial and Applied Mathematics eBooks

Ask a Question About This Paper

Summary

Login to see paper summary

The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items … The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items because of their applications in mechanism design. The most important of these generalizations are to matroids and to combinatorial auctions (extends bipartite matching). Kleinberg-Weinberg \cite{KW-STOC12} and Feldman et al. \cite{feldman2015combinatorial} show that for adversarial arrival order of random variables the optimal prophet inequalities give a $1/2$-approximation. For many settings, however, it's conceivable that the arrival order is chosen uniformly at random, akin to the secretary problem. For such a random arrival model, we improve upon the $1/2$-approximation and obtain $(1-1/e)$-approximation prophet inequalities for both matroids and combinatorial auctions. This also gives improvements to the results of Yan \cite{yan2011mechanism} and Esfandiari et al. \cite{esfandiari2015prophet} who worked in the special cases where we can fully control the arrival order or when there is only a single item. Our techniques are threshold based. We convert our discrete problem into a continuous setting and then give a generic template on how to dynamically adjust these thresholds to lower bound the expected total welfare.
The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items … The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items because of their applications in mechanism design. The most important of these generalizations are to matroids and to combinatorial auctions (extends bipartite matching). Kleinberg-Weinberg \cite{KW-STOC12} and Feldman et al. \cite{feldman2015combinatorial} show that for adversarial arrival order of random variables the optimal prophet inequalities give a $1/2$-approximation. For many settings, however, it's conceivable that the arrival order is chosen uniformly at random, akin to the secretary problem. For such a random arrival model, we improve upon the $1/2$-approximation and obtain $(1-1/e)$-approximation prophet inequalities for both matroids and combinatorial auctions. This also gives improvements to the results of Yan \cite{yan2011mechanism} and Esfandiari et al. \cite{esfandiari2015prophet} who worked in the special cases where we can fully control the arrival order or when there is only a single item. Our techniques are threshold based. We convert our discrete problem into a continuous setting and then give a generic template on how to dynamically adjust these thresholds to lower bound the expected total welfare.
Optimal stopping theory is a powerful tool for analyzing scenarios such as online auctions in which we generally require optimizing an objective function over the space of stopping rules for … Optimal stopping theory is a powerful tool for analyzing scenarios such as online auctions in which we generally require optimizing an objective function over the space of stopping rules for an allocation process under uncertainty. Perhaps the most classic problems of stopping theory are the prophet inequality problem and the secretary problem. The classical prophet inequality states that by choosing the same threshold OPT/2 for every step, one can achieve the tight competitive ratio of 0.5. On the other hand, for the basic secretary problem, the optimal strategy achieves the tight competitive ratio of 1/e. In this paper, we introduce Prophet Secretary, a natural combination of the prophet inequality and the secretary problems. An example motivation for our problem is as follows. Consider a seller that has an item to sell on the market to a set of arriving customers. The seller knows the types of customers that may be interested in the item and he has a price distribution for each type: the price offered by a customer of a type is anticipated to be drawn from the corresponding distribution. However, the customers arrive in a random order. Upon the arrival of a customer, the seller makes an irrevocable decision whether to sell the item at the offered price. We address the question of finding a strategy for selling the item at a high price. We show that by using a uniform threshold one cannot break the 0.5 barrier. However, we show that i) using n distinct non-adaptive thresholds one can obtain a competitive ratio that goes to (1-1/e) as n grows; and ii) no online algorithm can achieve a competitive ratio better than 0.75. Our results improve the (asymptotic) approximation guarantee of single-item sequential posted pricing mechanisms from 0.5 to (1-1/e) when the order of agents (customers) is chosen randomly.
Optimal stopping theory is a powerful tool for analyzing scenarios such as online auctions in which we generally require optimizing an objective function over the space of stopping rules for … Optimal stopping theory is a powerful tool for analyzing scenarios such as online auctions in which we generally require optimizing an objective function over the space of stopping rules for an allocation process under uncertainty. Perhaps the most classic problems of stopping theory are the prophet inequality problem and the secretary problem. The classical prophet inequality states that by choosing the same threshold OPT/2 for every step, one can achieve the tight competitive ratio of 0.5. On the other hand, for the basic secretary problem, the optimal strategy achieves the tight competitive ratio of 1/e. In this paper, we introduce Prophet Secretary, a natural combination of the prophet inequality and the secretary problems. An example motivation for our problem is as follows. Consider a seller that has an item to sell on the market to a set of arriving customers. The seller knows the types of customers that may be interested in the item and he has a price distribution for each type: the price offered by a customer of a type is anticipated to be drawn from the corresponding distribution. However, the customers arrive in a random order. Upon the arrival of a customer, the seller makes an irrevocable decision whether to sell the item at the offered price. We address the question of finding a strategy for selling the item at a high price. We show that by using a uniform threshold one cannot break the 0.5 barrier. However, we show that i) using n distinct non-adaptive thresholds one can obtain a competitive ratio that goes to (1-1/e) as n grows; and ii) no online algorithm can achieve a competitive ratio better than 0.75. Our results improve the (asymptotic) approximation guarantee of single-item sequential posted pricing mechanisms from 0.5 to (1-1/e) when the order of agents (customers) is chosen randomly.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with extensive applications to mechanism design and online optimization. We study the \emph{cost minimization} counterpart of the classical prophet … Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with extensive applications to mechanism design and online optimization. We study the \emph{cost minimization} counterpart of the classical prophet inequality: a decision maker is facing a sequence of costs $X_1, X_2, \dots, X_n$ drawn from known distributions in an online manner and \emph{must} ``stop'' at some point and take the last cost seen. The goal is to compete with a ``prophet'' who can see the realizations of all $X_i$'s upfront and always select the minimum, obtaining a cost of $\mathbb{E}[\min_i X_i]$. If the $X_i$'s are not identically distributed, no strategy can achieve a bounded approximation, even for random arrival order and $n = 2$. This leads us to consider the case where the $X_i$'s are independent and identically distributed (I.I.D.). For the I.I.D. case, we show that if the distribution satisfies a mild condition, the optimal stopping strategy achieves a (distribution-dependent) constant-factor approximation to the prophet's cost. Moreover, for MHR distributions, this constant is at most $2$. All our results are tight. We also demonstrate an example distribution that does not satisfy the condition and for which the competitive ratio of any algorithm is infinite. Turning our attention to single-threshold strategies, we design a threshold that achieves a $O\left(polylog{n}\right)$-factor approximation, where the exponent in the logarithmic factor is a distribution-dependent constant, and we show a matching lower bound. Finally, we note that our results can be used to design approximately optimal posted price-style mechanisms for procurement auctions which may be of independent interest. Our techniques utilize the \emph{hazard rate} of the distribution in a novel way, allowing for a fine-grained analysis which could find further applications in prophet inequalities.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms and is used to derive new and improved results for combinatorial markets (with and without complements), multidimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
In the Prophet Secretary problem, samples from a known set of probability distributions arrive one by one in a uniformly random order, and an algorithm must irrevocably pick one of … In the Prophet Secretary problem, samples from a known set of probability distributions arrive one by one in a uniformly random order, and an algorithm must irrevocably pick one of the samples as soon as it arrives. The goal is to maximize the expected value of the sample picked relative to the expected maximum of the distributions. This is one of the most simple and fundamental problems in online decision making that models the process selling one item to a sequence of costumers. For a closely related problem called the Prophet Inequality where the order of the random variables is adversarial, it is known that one can achieve in expectation $1/2$ of the expected maximum, and no better ratio is possible. For the Prophet Secretary problem, that is, when the variables arrive in a random order, Esfandiari et al. (ESA 2015) showed that one can actually get $1-1/e$ of the maximum. The $1-1/e$ bound was recently extended to more general settings (Ehsani et al., 2017). Given these results, one might be tempted to believe that $1-1/e$ is the correct bound. We show that this is not the case by providing an algorithm for the Prophet Secretary problem that beats the $1-1/e$ bound and achieves $1-1/e+1/400$ of the optimum value. We also prove a hardness result on the performance of algorithms under a natural restriction which we call deterministic distribution-insensitivity.
In the Prophet Secretary problem, samples from a known set of probability distributions arrive one by one in a uniformly random order, and an algorithm must irrevocably pick one of … In the Prophet Secretary problem, samples from a known set of probability distributions arrive one by one in a uniformly random order, and an algorithm must irrevocably pick one of the samples as soon as it arrives. The goal is to maximize the expected value of the sample picked relative to the expected maximum of the distributions. This is one of the most simple and fundamental problems in online decision making that models the process selling one item to a sequence of costumers. For a closely related problem called the Prophet Inequality where the order of the random variables is adversarial, it is known that one can achieve in expectation $1/2$ of the expected maximum, and no better ratio is possible. For the Prophet Secretary problem, that is, when the variables arrive in a random order, Esfandiari et al.\ (ESA 2015) showed that one can actually get $1-1/e$ of the maximum. The $1-1/e$ bound was recently extended to more general settings (Ehsani et al., 2017). Given these results, one might be tempted to believe that $1-1/e$ is the correct bound. We show that this is not the case by providing an algorithm for the Prophet Secretary problem that beats the $1-1/e$ bound and achieves $1-1/e+1/400$ of the optimum value. We also prove a hardness result on the performance of algorithms under a natural restriction which we call deterministic distribution-insensitivity.
The prophet and secretary problems demonstrate online scenarios involving the optimal stopping theory. In a typical prophet or secretary problem, selection decisions are assumed to be immediate and irrevocable. However, … The prophet and secretary problems demonstrate online scenarios involving the optimal stopping theory. In a typical prophet or secretary problem, selection decisions are assumed to be immediate and irrevocable. However, many online settings accommodate some degree of revocability. To study such scenarios, we introduce the $\ell-out-of-k$ setting, where the decision maker can select up to $k$ elements immediately and irrevocably, but her performance is measured by the top $\ell$ elements in the selected set. Equivalently, the decision makes can hold up to $\ell$ elements at any given point in time, but can make up to $k-\ell$ returns as new elements arrive. We give upper and lower bounds on the competitive ratio of $\ell$-out-of-$k$ prophet and secretary scenarios. These include a single-sample prophet algorithm that gives a competitive ratio of $1-\ell\cdot e^{-\Theta\left(\frac{\left(k-\ell\right)^2}{k}\right)}$, which is asymptotically tight for $k-\ell=\Theta(\ell)$. For secretary settings, we devise an algorithm that obtains a competitive ratio of $1-\ell e^{-\frac{k-8\ell}{2+2\ln \ell}} - e^{-k/6}$, and show that no secretary algorithm obtains a better ratio than $1-e^{-k}$ (up to negligible terms). In passing, our results lead to an improvement of the results of Assaf et al. [2000] for $1-out-of-k$ prophet scenarios. Beyond the contribution to online algorithms and optimal stopping theory, our results have implications to mechanism design. In particular, we use our prophet algorithms to derive {\em overbooking} mechanisms with good welfare and revenue guarantees; these are mechanisms that sell more items than the seller's capacity, then allocate to the agents with the highest values among the selected agents.
The prophet and secretary problems demonstrate online scenarios involving the optimal stopping theory. In a typical prophet or secretary problem, selection decisions are assumed to be immediate and irrevocable. However, … The prophet and secretary problems demonstrate online scenarios involving the optimal stopping theory. In a typical prophet or secretary problem, selection decisions are assumed to be immediate and irrevocable. However, many online settings accommodate some degree of revocability. To study such scenarios, we introduce the $\ell-out-of-k$ setting, where the decision maker can select up to $k$ elements immediately and irrevocably, but her performance is measured by the top $\ell$ elements in the selected set. Equivalently, the decision makes can hold up to $\ell$ elements at any given point in time, but can make up to $k-\ell$ returns as new elements arrive. We give upper and lower bounds on the competitive ratio of $\ell$-out-of-$k$ prophet and secretary scenarios. These include a single-sample prophet algorithm that gives a competitive ratio of $1-\ell\cdot e^{-\Theta\left(\frac{\left(k-\ell\right)^2}{k}\right)}$, which is asymptotically tight for $k-\ell=\Theta(\ell)$. For secretary settings, we devise an algorithm that obtains a competitive ratio of $1-\ell e^{-\frac{k-8\ell}{2+2\ln \ell}} - e^{-k/6}$, and show that no secretary algorithm obtains a better ratio than $1-e^{-k}$ (up to negligible terms). In passing, our results lead to an improvement of the results of Assaf et al. [2000] for $1-out-of-k$ prophet scenarios. Beyond the contribution to online algorithms and optimal stopping theory, our results have implications to mechanism design. In particular, we use our prophet algorithms to derive {\em overbooking} mechanisms with good welfare and revenue guarantees; these are mechanisms that sell more items than the seller's capacity, then allocate to the agents with the highest values among the selected agents.
Real-world problems such as ad allocation and matching have been extensively studied under the lens of combinatorial optimization. In several applications, uncertainty in the input appears naturally and this has … Real-world problems such as ad allocation and matching have been extensively studied under the lens of combinatorial optimization. In several applications, uncertainty in the input appears naturally and this has led to the study of online stochastic optimization models for such problems. For the offline case, these constrained combinatorial optimization problems have been extensively studied, and Contention Resolution Schemes (CRSs), introduced by Chekuri, Vondr\'{a}k, and Zenklusen, have emerged in recent years as a general framework to obtaining a solution. The idea behind a CRS is to first obtain a fractional solution to a (continuous) relaxation of the objective and then round the fractional solution to an integral one. When the order of rounding is controlled by an adversary, Online Contention Resolution Schemes (OCRSs) can be used instead, and have been successfully applied in settings such as prophet inequalities and stochastic probing. In this work, we focus on greedy OCRSs, which provide guarantees against the strongest possible adversary, an almighty adversary. Intuitively, a greedy OCRS has to make all its decisions before the online process starts. We present simple $1/e$ - selectable greedy OCRSs for the single-item setting, partition matroids and transversal matroids, which improve upon the previous state-of-the-art greedy OCRSs for these constraints. We also show that our greedy OCRSs are optimal, even for the simple single-item case.
In the prophet secretary problem, $n$ values are drawn independently from known distributions, and presented in a uniformly random order. A decision-maker must accept or reject each value when it … In the prophet secretary problem, $n$ values are drawn independently from known distributions, and presented in a uniformly random order. A decision-maker must accept or reject each value when it is presented, and may accept at most $k$ values in total. The objective is to maximize the expected sum of accepted values. We analyze the performance of static threshold policies, which accept the first $k$ values exceeding a fixed threshold (or all such values, if fewer than $k$ exist). We show that an appropriate threshold guarantees $\gamma_k = 1 - e^{-k}k^k/k!$ times the value of the offline optimal solution. Note that $\gamma_1 = 1-1/e$, and by Stirling's approximation $\gamma_k \approx 1-1/\sqrt{2 \pi k}$. This represents the best-known guarantee for the prophet secretary problem for all $k>1$, and is tight for all $k$ for the class of static threshold policies. We provide two simple methods for setting the threshold. Our first method sets a threshold such that $k \cdot \gamma_k$ values are accepted in expectation, and offers an optimal guarantee for all $k$. Our second sets a threshold such that the expected number of values exceeding the threshold is equal to $k$. This approach gives an optimal guarantee if $k > 4$, but gives sub-optimal guarantees for $k \le 4$. Our proofs use a new result for optimizing sums of independent Bernoulli random variables, which extends a classical result of Hoeffding (1956) and is likely to be of independent interest. Finally, we note that our methods for setting thresholds can be implemented under limited information about agents' values.
In the online 2-bounded auction problem, we have a collection of items represented as nodes in a graph and bundles of size two represented by edges. Agents are presented sequentially, … In the online 2-bounded auction problem, we have a collection of items represented as nodes in a graph and bundles of size two represented by edges. Agents are presented sequentially, each with a random weight function over the bundles. The goal of the decision-maker is to find an allocation of bundles to agents of maximum weight so that every item is assigned at most once, i.e., the solution is a matching in the graph. When the agents are single-minded (i.e., put all the weight in a single bundle), we recover the maximum weight prophet matching problem under edge arrivals (a.k.a. prophet matching). In this work, we provide new and improved upper bounds on the competitiveness achievable by an algorithm for the general online 2-bounded auction and the (single-minded) prophet matching problems. For adversarial arrival order of the agents, we show that no algorithm for the online 2-bounded auction problem achieves a competitiveness larger than $4/11$, while no algorithm for prophet matching achieves a competitiveness larger than $\approx 0.4189$. Using a continuous-time analysis, we also improve the known bounds for online 2-bounded auctions for random order arrivals to $\approx 0.5968$ in the general case, a bound of $\approx 0.6867$ in the IID model, and $\approx 0.6714$ in prophet-secretary model.
The prophet and secretary problems demonstrate online scenarios involving the optimal stopping theory. In a typical prophet or secretary problem, selection decisions are assumed to be immediate and irrevocable. However, … The prophet and secretary problems demonstrate online scenarios involving the optimal stopping theory. In a typical prophet or secretary problem, selection decisions are assumed to be immediate and irrevocable. However, many online settings accommodate some degree of revocability. To study such scenarios, we introduce the l-out-of- k setting, where the decision maker can select up to k elements immediately and irrevocably, but her performance is measured by the top l elements in the selected set. Equivalently, the decision makes can hold up to l elements at any given point in time, but can make up to k-l returns as new elements arrive. We give upper and lower bounds on the competitive ratio of l-out-of- k prophet and secretary scenarios. For l-out-of- k prophet scenarios we provide a single-sample algorithm with competitive ratio 1-l· e-Θ((k-l)2/k) . The algorithm is a single-threshold algorithm, which sets a threshold that equals the (l+k/2)th highest sample, and accepts all values exceeding this threshold, up to reaching capacity k . On the other hand, we show that this result is tight if the number of possible returns is linear in l (i.e., k-l =Θ(l)). In particular, we show that no single-sample algorithm obtains a competitive ratio better than 1 - 2-(2k+1)/k+1 . We also present a deterministic single-threshold algorithm for the 1-out-of- k prophet setting which obtains a competitive ratio of 1-3/2 · e-s/k 6, knowing only the distribution of the maximum value. This result improves the result of [Assaf & Samuel-Cahn, J. of App. Prob., 2000].
We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single … We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single choice problem [Rubinstein et al., 2020], most existing SSPI results were obtained via an elegant, but inherently lossy, reduction to order-oblivious secretary (OOS) policies [Azar et al., 2014]. Motivated by this discrepancy, we develop an intuitive and versatile greedy-based technique that yields SSPIs directly rather than through the reduction to OOSs. Our results can be seen as generalizing and unifying a number of existing results in the area of prophet and secretary problems. Our algorithms significantly improve on the competitive guarantees for a number of interesting scenarios (including general matching with edge arrivals, bipartite matching with vertex arrivals, and certain matroids), and capture new settings (such as budget additive combinatorial auctions). Complementing our algorithmic results, we also consider mechanism design variants. Finally, we analyze the power and limitations of different SSPI approaches by providing a partial converse to the reduction from SSPI to OOS given by Azar et al.
We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially … We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially gets to sample each of $N$ items independently with probability $p$, and can observe the relative rankings of these sampled items. Then, the DM faces the remaining items in an online fashion, observing the relative rankings of all revealed items. While scanning the sequence the DM makes irrevocable stop/continue decisions and her reward for stopping the sequence facing the item with rank $i$ is $Y_i$. The goal of the DM is to maximize her reward. We start by studying the case in which the values $Y_i$ are known to the DM, and then move to the case in which these values are adversarial. For the former case, we write the natural linear program that captures the performance of an algorithm, and take its continuous limit. We prove a structural result about this continuous limit, which allows us to reduce the problem to a relatively simple real optimization problem. We establish that the optimal algorithm is given by a sequence of thresholds $t_1\le t_2\le\cdots$ such that the DM should stop if seeing an item with current ranking $i$ after time $t_i$. Additionally we are able to recover several classic results in the area such as those for secretary problem and the minimum ranking problem. For the adversarial case, we obtain a similar linear program with an additional stochastic dominance constraint. Using the same machinery we are able to pin down the optimal competitive ratios for all values of $p$. Notably, we prove that as $p$ approaches 1, our guarantee converges linearly to 0.745, matching that of the i.i.d.~prophet inequality. Also interesting is the case $p=1/2$, where our bound evaluates to $0.671$, which improves upon the state of the art.
Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case … Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here $n$ agents with subadditive valuation functions compete for the assignment of $m$ items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of $O(\log m)$. We make major progress on this question by providing an $O(\log \log m)$ prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an $O(\log \log m)$ approximation to the optimal revenue for subadditive valuations under an item-independence assumption.
We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is … We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori known probability distribution. Under edge arrival, the weight of each edge is revealed upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival, the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. To study these settings, we introduce a novel unified framework of batched prophet inequalities that captures online settings where elements arrive in batches; in particular it captures matching under the two aforementioned arrival models. Our algorithms rely on the construction of suitable online contention resolution schemes (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction from batched prophet inequality to batched OCRS, and finally we construct batched OCRSs with selectable ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of the art for the corresponding settings. For vertex arrival, our result is tight. Interestingly, pricing-based prophet inequalities with comparable competitive ratios are unknown.
In the prophet inequality problem, a gambler faces a sequence of items arriving online with values drawn independently from known distributions. On seeing an item, the gambler must choose whether … In the prophet inequality problem, a gambler faces a sequence of items arriving online with values drawn independently from known distributions. On seeing an item, the gambler must choose whether to accept its value as her reward and quit the game, or reject it and continue. The gambler's aim is to maximize her expected reward relative to the expected maximum of the values of all items. Since the seventies, a tight bound of 1/2 has been known for this competitive ratio in the setting where the items arrive in an adversarial order [Krengel and Sucheston, 1977, 1978]. However, the optimum ratio still remains unknown in the order selection setting, where the gambler selects the arrival order, as well as in prophet secretary, where the items arrive in a random order. Moreover, it is not even known whether a separation exists between the two settings.
We consider the problem of maximizing the expected revenue from selling $k$ homogeneous goods to $n$ unit-demand buyers who arrive sequentially with independent and identically distributed valuations. In this setting … We consider the problem of maximizing the expected revenue from selling $k$ homogeneous goods to $n$ unit-demand buyers who arrive sequentially with independent and identically distributed valuations. In this setting the optimal posted prices are dynamic in the sense that they depend on the remaining numbers of goods and buyers. We investigate how much revenue is lost when a single static price is used instead for all buyers and goods, and prove upper bounds on the ratio between the maximum revenue from dynamic prices and that from static prices. These bounds are tight for all values of $k$ and $n$ and vary depending on a regularity property of the underlying distribution. For general distributions we obtain a ratio of $2-k/n$, for regular distributions a ratio that increases in $n$ and is bounded from above by $1/(1-k^k/(e^{k}k!))$, which is roughly $1/(1-1/(\sqrt{2πk}))$. The lower bounds hold for the revenue gap between dynamic and static prices. The upper bounds are obtained via an ex-ante relaxation of the revenue maximization problem, as a consequence the tight bounds of $2-k/n$ in the general case and of $1/(1-1/(\sqrt{2πk}))$ in the regular case apply also to the potentially larger revenue gap between the optimal incentive-compatible mechanism and the optimal static price. Our results imply that for regular distributions the benefit of dynamic prices vanishes while for non-regular distributions dynamic prices may achieve up to twice the revenue of static prices.
Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case … Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here n agents with subadditive valuation functions compete for the assignment of m items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of O(log m). We make major progress on this question by providing an O(log log m) prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an O(log log m) approximation to the optimal revenue for subadditive valuations under an item-independence assumption.
A longstanding open problem in Algorithmic Mechanism Design is to design computationally-efficient truthful mechanisms for (approximately) maximizing welfare in combinatorial auctions with submodular bidders. The first such mechanism was obtained … A longstanding open problem in Algorithmic Mechanism Design is to design computationally-efficient truthful mechanisms for (approximately) maximizing welfare in combinatorial auctions with submodular bidders. The first such mechanism was obtained by Dobzinski, Nisan, and Schapira [STOC'06] who gave an O(log <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> m)-approximation where m is number of items. This problem has been studied extensively since, culminating in an O(√log m)-approximation mechanism by Dobzinski [STOC'16]. We present a computationally-efficient truthful mechanism with approximation ratio that improves upon the state-of-the-art by an exponential factor. In particular, our mechanism achieves an O((log log m) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> )-approximation in expectation, uses only O(n) demand queries, and has universal truthfulness whether Θ(√log m) is the best approximation ratio in this guarantee. This settles an open question of Dobzinski on setting in negative.
In recent years, Contention Resolution Schemes (CRSs), introduced by Chekuri, Vondr\'{a}k, and Zenklusen, have emerged as a general framework for obtaining feasible solutions to combinatorial optimization problems with constraints. The … In recent years, Contention Resolution Schemes (CRSs), introduced by Chekuri, Vondr\'{a}k, and Zenklusen, have emerged as a general framework for obtaining feasible solutions to combinatorial optimization problems with constraints. The idea is to first solve a continuous relaxation and then round the fractional solution. When one does not have any control on the order of rounding, Online Contention Resolution Schemes (OCRSs) can be used instead, and have been successfully applied in settings such as prophet inequalities and stochastic probing. Intuitively, a greedy OCRS has to decide which elements to include in the integral solution before the online process starts. In this work, we give a simple $1/e$ - selectable greedy single item OCRS, and then proceed to show that it is optimal.
In a prophet inequality problem, n independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent … In a prophet inequality problem, n independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent value as reward. We evaluate a stopping rule by the worst-case ratio between its expected reward and the expectation of the maximum variable. In the classic setting, the order is fixed, and the optimal ratio is known to be 1/2. Three variants of this problem have been extensively studied: the prophet-secretary model, where variables arrive in uniformly random order; the free-order model, where the gambler chooses the arrival order; and the i.i.d. model, where the distributions are all the same, rendering the arrival order irrelevant. Most of the literature assumes that distributions are known to the gambler. Recent work has considered the question of what is achievable when the gambler has access only to a few samples per distribution. Surprisingly, in the fixed-order case, a single sample from each distribution is enough to approximate the optimal ratio, but this is not the case in any of the three variants. We provide a unified proof that for all three variants of the problem, a constant number of samples (independent of n) for each distribution is good enough to approximate the optimal ratios. Prior to our work, this was known to be the case only in the i.i.d. variant. Previous works relied on explicitly constructing sample-based algorithms that match the best possible ratio. Remarkably, the optimal ratios for the prophet-secretary and the free-order variants with full information are still unknown. Consequently, our result requires a significantly different approach than for the classic problem and the i.i.d. variant, where the optimal ratios and the algorithms that achieve them are known. We complement our result showing that our algorithms can be implemented in polynomial time. A key ingredient in our proof is an existential result based on a minimax argument, which states that there must exist an algorithm that attains the optimal ratio and does not rely on the knowledge of the upper tail of the distributions. A second key ingredient is a refined sample-based version of a decomposition of the instance into "small" and "large" variables, first introduced by Liu et al. [EC'21]. The universality of our approach opens avenues for generalization to other sample-based models. Furthermore, we uncover structural properties that might help pinpoint the optimal ratios in the full-information cases.
SARS-CoV-2 (n-coronavirus) is a global pandemic that has killed millions of people all over the world. In severe situations, it can induce pneumonia and severe acute respiratory syndrome (SARS), which … SARS-CoV-2 (n-coronavirus) is a global pandemic that has killed millions of people all over the world. In severe situations, it can induce pneumonia and severe acute respiratory syndrome (SARS), which can lead to death. It's an asymptomatic sickness that makes life and work more difficult for us. This research focused on the current state of the coronavirus pandemic and forecasted the global situation, as well as its impacts and future status. The authors used the FbProphet model to forecast new covid cases and deaths for the month of August utilizing various information representation and machine learning algorithms. They hope the findings will aid scientists, researchers, and laypeople in predicting and analyzing the effects of the epidemic. Finally, they conclude that the virus's second wave was around four times stronger than the first. They also looked at the trajectory of COVID-19 instances (monthly and weekly) and discovered that the number of cases rises more during the weekdays, which could be due to the weekend lockout.
Prophet inequalities and secretary problems have been extensively studied in recent years due to their elegance, connections to online algorithms, stochastic optimization, and mechanism design problems in game theoretic settings. … Prophet inequalities and secretary problems have been extensively studied in recent years due to their elegance, connections to online algorithms, stochastic optimization, and mechanism design problems in game theoretic settings. Rubinstein and Singla developed a notion of combinatorial prophet inequalities in order to generalize the standard prophet inequality setting to combinatorial valuation functions such as submodular and subadditive functions. For non-negative submodular functions they demonstrated a constant factor prophet inequality for matroid constraints. Along the way they showed a variant of the correlation gap for non-negative submodular functions. In this paper we revisit their notion of correlation gap as well as the standard notion of correlation gap and prove much tighter and cleaner bounds. Via these bounds and other insights we obtain substantially improved constant factor combinatorial prophet inequalities for both monotone and non-monotone submodular functions over any constraint that admits an Online Contention Resolution Scheme. In addition to improved bounds we describe efficient polynomial-time algorithms that achieve these bounds.
The study of the prophet inequality problem in the limited information regime was initiated by Azar et al. [SODA'14] in the pursuit of prior-independent posted-price mechanisms. As they show, $O(1)$-competitive … The study of the prophet inequality problem in the limited information regime was initiated by Azar et al. [SODA'14] in the pursuit of prior-independent posted-price mechanisms. As they show, $O(1)$-competitive policies are achievable using only a single sample from the distribution of each agent. A notable portion of their results relies on reducing the design of single-sample prophet inequalities (SSPIs) to that of order-oblivious secretary (OOS) policies. The above reduction comes at the cost of not fully utilizing the available samples. However, to date, this is essentially the only method for proving SSPIs for many combinatorial sets. Very recently, Rubinstein et al. [ITCS'20] give a surprisingly simple algorithm which achieves the optimal competitive ratio for the single-choice SSPI problem $-$ a result which is unobtainable going through the reduction to secretary problems. Motivated by this discrepancy, we study the competitiveness of simple SSPI policies directly, without appealing to results from OOS literature. In this direction, we first develop a framework for analyzing policies against a greedy-like prophet solution. Using this framework, we obtain the first SSPI for general (non-bipartite) matching environments, as well as improved competitive ratios for transversal and truncated partition matroids. Second, motivated by the observation that many OOS policies for matroids decompose the problem into independent rank-$1$ instances, we provide a meta-theorem which applies to any matroid satisfying this partition property. Leveraging the recent results by Rubinstein et al., we obtain improved competitive guarantees (most by a factor of $2$) for a number of matroids captured by the reduction of Azar et al. Finally, we discuss applications of our SSPIs to the design of mechanisms for multi-dimensional limited information settings with improved revenue and welfare guarantees.
.A longstanding open problem in algorithmic mechanism design is to design truthful mechanisms that are computationally efficient and (approximately) maximize welfare in combinatorial auctions with submodular bidders. The first such … .A longstanding open problem in algorithmic mechanism design is to design truthful mechanisms that are computationally efficient and (approximately) maximize welfare in combinatorial auctions with submodular bidders. The first such mechanism was obtained by Dobzinski, Nisan, and Schapira [Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, ACM, New York, 2005, pp. 610–618] who gave an \(O(\log^2{m})\) -approximation, where \(m\) is the number of items. This problem has been studied extensively since, culminating in an \(O(\sqrt{\log{m}})\) -approximation mechanism by Dobzinski [Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, ACM, New York, 2016, pp. 940–948]. We present a computationally-efficient truthful mechanism with an approximation ratio that improves upon the state-of-the-art by an exponential factor. In particular, our mechanism achieves an \(O((\log \log{m})^3)\) -approximation in expectation, uses only \(O(n)\) demand queries, and has universal truthfulness guarantee. This settles an open question of Dobzinski on whether \(\Theta (\sqrt{\log{m}})\) is the best approximation ratio in this setting in the negative.Keywordscombinatorial auctionstruthful mechanismssubmodular valuationsMSC codes91A99
This paper considers Bayesian revenue maximization in the k-unit setting, where a monopolist seller has k copies of an indivisible item and faces n unit-demand buyers (whose value distributions can … This paper considers Bayesian revenue maximization in the k-unit setting, where a monopolist seller has k copies of an indivisible item and faces n unit-demand buyers (whose value distributions can be non-identical). Four basic mechanisms among others have been widely employed in practice and widely studied in the literature: Myerson Auction, Sequential Posted-Pricing, (k + 1)-th Price Auction with Anonymous Reserve, and Anonymous Pricing. Regarding a pair of mechanisms, we investigate the largest possible ratio between the two revenues (a.k.a. the revenue gap), over all possible value distributions of the buyers. Divide these four mechanisms into two groups: (i) the discriminating mechanism group, Myerson Auction and Sequential Posted-Pricing, and (ii) the anonymous mechanism group, Anonymous Reserve and Anonymous Pricing. Within one group, the involved two mechanisms have an asymptotically tight revenue gap of 1 + Θ(1 / √k). In contrast, any two mechanisms from the different groups have an asymptotically tight revenue gap of Θ(łog k).
We present new results for online contention resolution schemes for the matching polytope of graphs, in the random-order (RCRS) and adversarial (OCRS) arrival models. Our results include improved selectability guarantees … We present new results for online contention resolution schemes for the matching polytope of graphs, in the random-order (RCRS) and adversarial (OCRS) arrival models. Our results include improved selectability guarantees (i.e., lower bounds), as well as new impossibility results (i.e., upper bounds). By well-known reductions to the prophet (secretary) matching problem, a c-selectable OCRS (RCRS) implies a c-competitive algorithm for adversarial (random order) edge arrivals. Similar reductions are also known for the query-commit matching problem. For the adversarial arrival model, we present a new analysis of the OCRS of Ezra et al. (EC, 2020). We show that this scheme is 0.344-selectable for general graphs and 0.349-selectable for bipartite graphs, improving on the previous 0.337 selectability result for this algorithm. We also show that the selectability of this scheme cannot be greater than 0.361 for general graphs and 0.382 for bipartite graphs. We further show that no OCRS can achieve a selectability greater than 0.4 for general graphs, and 0.433 for bipartite graphs.For random-order arrivals, we present two attenuation-based schemes which use new attenuation functions. Our first RCRS is 0.474-selectable for general graphs, and our second is 0.476-selectable for bipartite graphs. These results improve upon the recent 0.45 (and 0.456) selectability results for general graphs (respectively, bipartite graphs) due to Pollner et al. (EC, 2022). On general graphs, our 0.474-selectable RCRS provides the best known positive result even for offline contention resolution, and also for the correlation gap. We conclude by proving a fundamental upper bound of 0.5 on the selectability of RCRS, using bipartite graphs.* The full version of the paper can be accessed at https://arxiv.org/abs/2209.07520
We consider prophet inequalities in a setting where agents correspond to both elements in a matroid and vertices in a graph. A set of agents is feasible if they form … We consider prophet inequalities in a setting where agents correspond to both elements in a matroid and vertices in a graph. A set of agents is feasible if they form both an independent set in the matroid and an independent set in the graph. Our main result is an ex-ante 1/(2d+2)-prophet inequality, where d is a graph parameter upper-bounded by the maximum size of an independent set in the neighborhood of any vertex. We establish this result through a framework that sets both dynamic prices for elements in the matroid (using the method of balanced thresholds), and static but discriminatory prices for vertices in the graph (motivated by recent developments in approximate dynamic programming). The threshold for accepting an agent is then the sum of these two prices. We show that for graphs induced by a certain family of interval-scheduling constraints, the value of d is 1. Our framework thus provides the first constant-factor prophet inequality when there are both matroid-independence constraints and interval-scheduling constraints. It also unifies and improves several results from the literature, leading to a 1/2-prophet inequality when agents have XOS valuation functions over a set of items and use them for a finite interval duration, and more generally, a 1/(d+1)-prophet inequality when these items each require a bundle of d resources to procure.
There are many settings in which a principal performs a task by delegating it to an agent, who searches over possible solutions and proposes one to the principal. This describes … There are many settings in which a principal performs a task by delegating it to an agent, who searches over possible solutions and proposes one to the principal. This describes many aspects of the workflow within organizations, as well as many of the activities undertaken by regulatory bodies, who often obtain relevant information from the parties being regulated through a process of delegation. A fundamental tension underlying delegation is the fact that the agent's interests will typically differ -- potentially significantly -- from the interests of the principal, and as a result the agent may propose solutions based on their own incentives that are inefficient for the principal. A basic problem, therefore, is to design mechanisms by which the principal can constrain the set of proposals they are willing to accept from the agent, to ensure a certain level of quality for the principal from the proposed solution. In this work, we investigate how much the principal loses -- quantitatively, in terms of the objective they are trying to optimize -- when they delegate to an agent. We develop a methodology for bounding this loss of efficiency, and show that in a very general model of delegation, there is a family of mechanisms achieving a universal bound on the ratio between the quality of the solution obtained through delegation and the quality the principal could obtain in an idealized benchmark where they searched for a solution themself. Moreover, it is possible to achieve such bounds through mechanisms with a natural threshold structure, which are thus structurally simpler than the optimal mechanisms typically considered in the literature on delegation. At the heart of our framework is an unexpected connection between delegation and the analysis of prophet inequalities, which we leverage to provide bounds on the behavior of our delegation mechanisms.
In the classic prophet inequality, a problem in optimal stopping theory, samples from independent random variables (possibly differently distributed) arrive online. A gambler that knows the distributions, but cannot see … In the classic prophet inequality, a problem in optimal stopping theory, samples from independent random variables (possibly differently distributed) arrive online. A gambler that knows the distributions, but cannot see the future, must decide at each point in time whether to stop and pick the current sample or to continue and lose that sample forever. The goal of the gambler is to maximize the expected value of what she picks and the performance measure is the worst case ratio between the expected value the gambler gets and what a prophet, that sees all the realizations in advance, gets. In the late seventies, Krengel and Sucheston, and Garling [16], established that this worst case ratio is a constant and that 1/2 is the best possible such constant. In the last decade the theory of prophet inequalities has resurged as an important problem due to its connections to posted price mechanisms, frequently used in online sales. A particularly interesting variant is the so-called Prophet Secretary problem, in which the only difference is that the samples arrive in a uniformly random order. For this variant several algorithms are known to achieve a constant of 1 – 1/e and very recently this barrier was slightly improved by Azar et al. [3].In this paper we derive a way of analyzing multithreshold strategies that basically sets a nonincreasing sequence of thresholds to be applied at different times. The gambler will thus stop the first time a sample surpasses the corresponding threshold. Specifically we consider a class of very robust strategies that we call blind quantile strategies. These constitute a clever generalization of single threshold strategies and consist in fixing a function which is used to define a sequence of thresholds once the instance is revealed. Our main result shows that these strategies can achieve a constant of 0.669 in the Prophet Secretary problem, improving upon the best known result of Azar et al. [3], and even that of Beyhaghi et al. [4] that works in the case the gambler can select the order of the samples. The crux of the analysis is a very precise analysis of the underlying stopping time distribution for the gambler's strategy that is inspired by the theory of Schur convex functions. We further prove that our family of blind strategies cannot lead to a constant better than 0.675.Finally we prove that no nonadaptive algorithm for the gambler can achieve a constant better than 0.732, which also improves upon a recent result of Azar et al. [3]. Here, a nonadaptive algorithm is an algorithm whose decision to stop can depend on the index of the random variable being sampled, on the value sampled, and on the time, but not on the history that has been observed.
We initiate the study of numerical linear algebra in the sliding window model, where only the most recent W updates in a stream form the underlying data set. Although many … We initiate the study of numerical linear algebra in the sliding window model, where only the most recent W updates in a stream form the underlying data set. Although many existing algorithms in the sliding window model use or borrow elements from the smooth histogram framework (Braverman and Ostrovsky, FOCS 2007), we show that many interesting linear-algebraic problems, including spectral and vector induced matrix norms, generalized regression, and lowrank approximation, are not amenable to this approach in the row-arrival model. To overcome this challenge, we first introduce a unified row-sampling based framework that gives randomized algorithms for spectral approximation, low-rank approximation/projection-cost preservation, and ℓ 1-subspace embeddings in the sliding window model, which often use nearly optimal space and achieve nearly input sparsity runtime. Our algorithms are based on "reverse online" versions of offline sampling distributions such as (ridge) leverage scores, ℓ 1 sensitivities, and Lewis weights to quantify both the importance and the recency of a row; our structural results on these distributions may be of independent interest for future algorithmic design. Although our techniques initially address numerical linear algebra in the sliding window model, our row-sampling framework rather surprisingly implies connections to the well-studied online model; our structural results also give the first sample optimal (up to lower order terms) online algorithm for low-rank approximation/projection-cost preservation. Using this powerful primitive, we give online algorithms for column/row subset selection and principal component analysis that resolves the main open question of Bhaskara et al. (FOCS 2019). We also give the first online algorithm for ℓ 1-subspace embeddings. We further formalize the connection between the online model and the sliding window model by introducing an additional unified framework for deterministic algorithms using a merge and reduce paradigm and the concept of online coresets, which we define as a weighted subset of rows of the input matrix that can be used to compute a good approximation to some given function on all of its prefixes. Our sampling based algorithms in the row-arrival online model yield online coresets, giving deterministic algorithms for spectral approximation, low-rank approximation/projection-cost preservation, and ℓ 1-subspace embeddings in the sliding window model that use nearly optimal space.
The classic analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. In contrast, machine learning approaches … The classic analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. In contrast, machine learning approaches shine in exploiting patterns in past inputs in order to predict the future. However, such predictions, although usually accurate, can be arbitrarily poor. Inspired by a recent line of work, we augment three well-known online settings with machine learned predictions about the future, and develop algorithms that take these predictions into account. In particular, we study the following online selection problems: (i) the classic secretary problem, (ii) online bipartite matching and (iii) the graphic matroid secretary problem. Our algorithms still come with a worst-case performance guarantee in the case that predictions are subpar while obtaining an improved competitive ratio (over the best-known classic online algorithm for each problem) when the predictions are sufficiently accurate. For each algorithm, we establish a trade-off between the competitive ratios obtained in the two respective cases.
This chapter introduces the \emph{random-order model} in online algorithms. In this model, the input is chosen by an adversary, then randomly permuted before being presented to the algorithm. This reshuffling … This chapter introduces the \emph{random-order model} in online algorithms. In this model, the input is chosen by an adversary, then randomly permuted before being presented to the algorithm. This reshuffling often weakens the power of the adversary and allows for improved algorithmic guarantees. We show such improvements for two broad classes of problems: packing problems where we must pick a constrained set of items to maximize total value, and covering problems where we must satisfy given requirements at minimum total cost. We also discuss how random-order model relates to other stochastic models used for non-worst-case competitive analysis.
Within the context of stochastic probing with commitment, we consider the online stochastic matching problem; that is, the one sided online bipartite matching problem where edges adjacent to an online … Within the context of stochastic probing with commitment, we consider the online stochastic matching problem; that is, the one sided online bipartite matching problem where edges adjacent to an online node must be probed to determine if they exist, based on known edge probabilities. If a probed edge exists, it must be used in the matching (if possible). We study this problem in the generality of a patience (or budget) constraint which limits the number of probes that can be made to edges adjacent to an online node. The patience constraint results in modelling and computational efficiency issues that are not encountered in the special cases of unit patience and full (i.e., unlimited) patience. The stochastic matching problem leads to a variety of settings. Our main contribution is to provide a new LP relaxation and a unified approach for establishing new and improved competitive bounds in three different input model settings (namely, adversarial, random order, and known i.i.d.). In all these settings, the algorithm does not have any control on the ordering of the online nodes. We establish competitive bounds in these settings, all of which generalize the standard non-stochastic setting when edges do not need to be probed (i.e., exist with certainty). All of our competitive ratios hold for arbitrary edge probabilities and patience constraints: (1) A $1-1/e$ ratio when the stochastic graph is known, offline vertices are weighted and online arrivals are adversarial. (2) A $1-1/e$ ratio when the stochastic graph is known, edges are weighted, and online arrivals are given in random order (i.e., in ROM, the random order model). (3) A $1-1/e$ ratio when online arrivals are drawn i.i.d. from a known stochastic type graph and edges are weighted. (4) A (tight) $1/e$ ratio when the stochastic graph is unknown, edges are weighted and online arrivals are given in random order.
We consider a fundamental problem in microeconomics: Selling a single item among a number of buyers whose values are drawn from known independent and regular distributions. There are four widely-used … We consider a fundamental problem in microeconomics: Selling a single item among a number of buyers whose values are drawn from known independent and regular distributions. There are four widely-used and widely-studied mechanisms in this literature: Anonymous Posted-Pricing (AP), Second-Price Auction with Anonymous Reserve (AR), Sequential Posted-Pricing (SPM), and Myerson Auction (OPT). Myerson Auction is optimal but complicated, which also suffers a few issues in practice such as fairness; AP is the simplest mechanism, but its revenue is also the lowest among these four; AR and SPM are of intermediate complexity and revenue. We study the revenue gaps among these four mechanisms, which is defined as the largest ratio between revenues from two mechanisms. We establish two tight ratios and one tighter bound:1.SPM/AP. This ratio studies the power of discrimination in pricing schemes. We obtain the tight ratio of roughly 2.62, closing the previous known bounds [e/(e – 1), e].2.AR/AP. This ratio studies the relative power of auction vs. pricing schemes, when no discrimination is allowed. We get the tight ratio of π2/6 ≈ 1.64, closing the previous known bounds [e/(e – 1), e].3.OPT/AR. This ratio studies the power of discrimination in auctions. Previously, the revenue gap is known to be in interval [2, e], and the lower-bound of 2 is conjectured to be tight [38, 37, 4]. We disprove this conjecture by obtaining a better lower-bound of 2.15.
We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each … We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known distribution. Each item, however, disappears after an a priori unknown amount of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the horizon for each item, but not its realization till the item actually disappears. As with the classic prophet inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the horizon and extracts full social surplus (or welfare). Our main results are for the setting where items have independent horizon distributions satisfying the monotone-hazard-rate (MHR) condition. Here, for any number of items, we achieve a constant-competitive bound via a conceptually simple policy that balances the rate at which buyers are accepted with the rate at which items are removed from the system. We implement this policy via a novel technique of matching via probabilistically simulating departures of the items at future times. Moreover, for a single item and MHR horizon distribution with mean $\mu$, we show a tight result: There is a fixed pricing scheme that has competitive ratio at most $2 - 1/\mu$, and this is the best achievable in this class. We further show that our results are best possible. First, we show that the competitive ratio is unbounded without the MHR assumption even for one item. Further, even when the horizon distributions are i.i.d. MHR and the number of items becomes large, the competitive ratio of any policy is lower bounded by a constant greater than $1$, which is in sharp contrast to the setting with identical deterministic horizons.
We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each … We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known distribution.Each item, however, disappears after an a priori unknown amount of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the horizon for each item, but not its realization till the item actually disappears. As with the classic prophet inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the horizon and extracts full social surplus (or welfare).
In a prophet inequality problem, $n$ independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent … In a prophet inequality problem, $n$ independent random variables are presented to a gambler one by one. The gambler decides when to stop the sequence and obtains the most recent value as reward. We evaluate a stopping rule by the worst-case ratio between its expected reward and the expectation of the maximum variable. In the classic setting, the order is fixed, and the optimal ratio is known to be 1/2. Three variants of this problem have been extensively studied: the prophet-secretary model, where variables arrive in uniformly random order; the free-order model, where the gambler chooses the arrival order; and the i.i.d. model, where the distributions are all the same, rendering the arrival order irrelevant. Most of the literature assumes that distributions are known to the gambler. Recent work has considered the question of what is achievable when the gambler has access only to a few samples per distribution. Surprisingly, in the fixed-order case, a single sample from each distribution is enough to approximate the optimal ratio, but this is not the case in any of the three variants. We provide a unified proof that for all three variants of the problem, a constant number of samples (independent of n) for each distribution is good enough to approximate the optimal ratios. Prior to our work, this was known to be the case only in the i.i.d. variant. We complement our result showing that our algorithms can be implemented in polynomial time. A key ingredient in our proof is an existential result based on a minimax argument, which states that there must exist an algorithm that attains the optimal ratio and does not rely on the knowledge of the upper tail of the distributions. A second key ingredient is a refined sample-based version of a decomposition of the instance into "small" and "large" variables, first introduced by Liu et al. [EC'21].
We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is … We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori known probability distribution. Under edge arrival, the weight of each edge is revealed upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival, the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. To study these settings, we introduce a novel unified framework of batched prophet inequalities that captures online settings where elements arrive in batches; in particular it captures matching under the two aforementioned arrival models. Our algorithms rely on the construction of suitable online contention resolution scheme (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction from batched prophet inequality to batched OCRS, and finally we construct batched OCRSs with selectable ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of the art for the corresponding settings. For the vertex arrival, our result is tight. Interestingly, a pricing-based prophet inequality with comparable competitive ratios is unknown.
A prophet inequality states, for some α ∈ [0, 1], that the expected value achievable by a gambler who sequentially observes random variables X1, . . . , Xn and … A prophet inequality states, for some α ∈ [0, 1], that the expected value achievable by a gambler who sequentially observes random variables X1, . . . , Xn and selects one of them is at least an α fraction of the maximum value in the sequence. We obtain three distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and the gambler has access to an additional βn samples for some β ≥ 0. We first give improved lower bounds on α for a wide range of values of β; specifically, α ≥ (1 + β)/e when β ≤ 1/(e − 1), which is tight, and α ≥ 0.648 when β = 1, which improves on a bound of around 0.635 due to Correa et al. (SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing, we then show that the new bounds can be obtained even in a streaming model of computation and thus in situations where the use of relevant data is complicated by the sheer amount of data available. We finally establish that the upper bound of 1/e for the case without samples is robust to additional information about the distribution, and applies also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a known distribution, from a finite set of known candidate distributions. This implies a tight prophet inequality for exchangeable sequences of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better guarantees when the number of candidate distributions is small, a setting we believe is of strong interest to applications.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and … In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and decides when to stop the process by taking the current item. The goal is to prove a "prophet inequality": that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since non-trivial guarantees are impossible for arbitrary correlations, we consider a natural "linear" correlation structure introduced by Bateni et al. [ESA 2015] as a generalization of the common-base value model of Chawla et al. [GEB 2015]. A key challenge is that threshold-based algorithms, which are commonly used for prophet inequalities, no longer guarantee good performance for linear correlations. We relate this roadblock to another "augmentations" challenge that might be of independent interest: many existing prophet inequality algorithms are not robust to slight increase in the values of the arriving items. We leverage this intuition to prove bounds (matching up to constant factors) that decay gracefully with the amount of correlation of the arriving items. We extend these results to the case of selecting multiple items by designing a new $(1+o(1))$ approximation ratio algorithm that is robust to augmentations.
We consider descending price auctions for selling m units of a good to unit demand i.i.d. buyers where there is an exogenous bound of k on the number of price … We consider descending price auctions for selling m units of a good to unit demand i.i.d. buyers where there is an exogenous bound of k on the number of price levels the auction clock can take. The auctioneer's problem is to choose price levels p_1 > p_2 >... > p_k for the auction clock such that auction expected revenue is maximized. The prices levels are announced prior to the auction. We reduce this problem to a new variant of prophet inequality, which we call "batched prophet inequality", where a decision-maker chooses k (decreasing) thresholds and then sequentially collects rewards (up to m) that are above the thresholds with ties broken uniformly at random. For the special case of m=1 (i.e., selling a single item), we show that the resulting descending auction with k price levels achieves 1- 1/e^k of the unrestricted (without the bound of k) optimal revenue. That means a descending auction with just 4 price levels can achieve more than 98% of the optimal revenue. We then extend our results for m>1 and provide a closed-form bound on the competitive ratio of our auction as a function of the number of units m and the number of price levels k.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and … In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and decides when to stop the process by taking the current item. The goal is to prove a "prophet inequality": that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since non-trivial guarantees are impossible for arbitrary correlations, we consider a natural "linear" correlation structure introduced by Bateni et al. [ESA'15] as a generalization of the common-base value model of Chawla et al. [GEB'15].
We show that the matroid secretary problem is equivalent to correlated contention resolution in the online random-order model. Specifically, the matroid secretary conjecture is true if and only if every … We show that the matroid secretary problem is equivalent to correlated contention resolution in the online random-order model. Specifically, the matroid secretary conjecture is true if and only if every matroid admits an online random-order contention resolution scheme which, given an arbitrary (possibly correlated) prior distribution over subsets of the ground set, matches the balance ratio of the best offline scheme for that distribution up to a constant. We refer to such a scheme as universal. Our result indicates that the core challenge of the matroid secretary problem lies in resolving contention for positively correlated inputs, in particular when the positive correlation is benign in as much as offline contention resolution is concerned. Our result builds on our previous work which establishes one direction of this equivalence, namely that the secretary conjecture implies universal random-order contention resolution, as well as a weak converse, which derives a matroid secretary algorithm from a random-order contention resolution scheme with only partial knowledge of the distribution. It is this weak converse that we strengthen in this paper: We show that universal random-order contention resolution for matroids, in the usual setting of a fully known prior distribution, suffices to resolve the matroid secretary conjecture in the affirmative. Our proof is the composition of three reductions. First, we use duality arguments to reduce the matroid secretary problem to the matroid prophet secretary problem with arbitrarily correlated distributions. Second, we introduce a generalization of contention resolution we term labeled contention resolution, to which we reduce the correlated matroid prophet secretary problem. Finally, we combine duplication of elements with limiting arguments to reduce labeled contention resolution to classical contention resolution.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Single-Sample Prophet Inequalities via Greedy-Ordered SelectionConstantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Single-Sample Prophet Inequalities via Greedy-Ordered SelectionConstantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca ReiffenhäuserConstantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca Reiffenhäuserpp.1298 - 1325Chapter DOI:https://doi.org/10.1137/1.9781611977073.54PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single choice problem [Rubinstein et al., 2020], most existing SSPI results were obtained via an elegant, but inherently lossy reduction to order-oblivious secretary (OOS) policies [Azar et al., 2014]. Motivated by this discrepancy, we develop an intuitive and versatile greedy-based technique that yields SSPIs directly rather than through the reduction to OOSs. Our results can be seen as generalizing and unifying a number of existing results in the area of prophet and secretary problems. Our algorithms significantly improve on the competitive guarantees for a number of interesting scenarios (including general matching with edge arrivals, bipartite matching with vertex arrivals, and certain matroids), and capture new settings (such as budget additive combinatorial auctions). Complementing our algorithmic results, we also consider mechanism design variants. Finally, we analyze the power and limitations of different SSPI approaches by providing a partial converse to the reduction from SSPI to OOS given by Azar et al. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771
Contention resolution schemes have proven to be a useful and unifying abstraction for a variety of constrained optimization problems, in both offline and online arrival models. Much of prior work … Contention resolution schemes have proven to be a useful and unifying abstraction for a variety of constrained optimization problems, in both offline and online arrival models. Much of prior work restricts attention to product distributions for the input set of elements, and studies contention resolution for increasingly general packing constraints, both offline and online. In this paper, we instead focus on generalizing the input distribution, restricting attention to matroid constraints in both the offline and online random arrival models. In particular, we study contention resolution when the input set is arbitrarily distributed, and may exhibit positive and/or negative correlations between elements. We characterize the distributions for which offline contention resolution is possible, and establish some of their basic closure properties. Our characterization can be interpreted as a distributional generalization of the matroid covering theorem. For the online random arrival model, we show that contention resolution is intimately tied to the secretary problem via two results. First, we show that a competitive algorithm for the matroid secretary problem implies that online contention resolution is essentially as powerful as offline contention resolution for matroids, so long as the algorithm is given the input distribution. Second, we reduce the matroid secretary problem to the design of an online contention resolution scheme of a particular form.
We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of $1/2$ can be achieved with a single … We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of $1/2$ can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant $\varepsilon > 0$, $O(n)$ samples from the distribution suffice to achieve the optimal competitive ratio ($\approx 0.745$) within $(1+\varepsilon)$, resolving an open problem of Correa, Dutting, Fischer, and Schewior.
This paper considers Bayesian revenue maximization in the $k$-unit setting, where a monopolist seller has $k$ copies of an indivisible item and faces $n$ unit-demand buyers (whose value distributions can … This paper considers Bayesian revenue maximization in the $k$-unit setting, where a monopolist seller has $k$ copies of an indivisible item and faces $n$ unit-demand buyers (whose value distributions can be non-identical). Four basic mechanisms among others have been widely employed in practice and widely studied in the literature: {\sf Myerson Auction}, {\sf Sequential Posted-Pricing}, {\sf $(k + 1)$-th Price Auction with Anonymous Reserve}, and {\sf Anonymous Pricing}. Regarding a pair of mechanisms, we investigate the largest possible ratio between the two revenues (a.k.a.\ the revenue gap), over all possible value distributions of the buyers. Divide these four mechanisms into two groups: (i)~the discriminating mechanism group, {\sf Myerson Auction} and {\sf Sequential Posted-Pricing}, and (ii)~the anonymous mechanism group, {\sf Anonymous Reserve} and {\sf Anonymous Pricing}. Within one group, the involved two mechanisms have an asymptotically tight revenue gap of $1 + \Theta(1 / \sqrt{k})$. In contrast, any two mechanisms from the different groups have an asymptotically tight revenue gap of $\Theta(\log k)$.
We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction setting, where n bidders have i.i.d. valuations for a single item. We show that for the … We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction setting, where n bidders have i.i.d. valuations for a single item. We show that for the natural class of Monotone Hazard Rate (MHR) distributions, offering the same, take-it-or-leave-it price to all bidders can achieve an (asymptotically) optimal revenue. In particular, the approximation ratio is shown to be 1+ O (ln ln n / ln n ), matched by a tight lower bound for the case of exponential distributions. This improves upon the previously best-known upper bound of e /( e −1)≈ 1.58 for the slightly more general class of regular distributions. In the worst case (over n ), we still show a global upper bound of 1.35. We give a simple, closed-form description of our prices, which, interestingly enough, relies only on minimal knowledge of the prior distribution, namely, just the expectation of its second-highest order statistic. Furthermore, we extend our techniques to handle the more general class of λ-regular distributions that interpolate between MHR (λ =0) and regular (λ =1). Our anonymous pricing rule now results in an asymptotic approximation ratio that ranges smoothly, with respect to λ, from 1 (MHR distributions) to e /( e −1) (regular distributions). Finally, we explicitly give a class of continuous distributions that provide matching lower bounds, for every λ.
We consider the maximum bipartite matching problem in stochastic settings, namely the query-commit and price-of-information models. In the query-commit model, an edge e independently exists with probability pe. We can … We consider the maximum bipartite matching problem in stochastic settings, namely the query-commit and price-of-information models. In the query-commit model, an edge e independently exists with probability pe. We can query whether an edge exists or not, but if it does exist, then we have to take it into our solution. In the unweighted case, one can query edges in the order given by the classical online algorithm of Karp, Vazirani, and Vazirani [20] to get a (1 – 1/e)-approximation. In contrast, the previously best known algorithm in the weighted case is the (1/2)-approximation achieved by the greedy algorithm that sorts the edges according to their weights and queries in that order.Improving upon the basic greedy, we give a (1 – 1/e)-approximation algorithm in the weighted query-commit model. We use a linear program (LP) to upper bound the optimum achieved by any strategy. The proposed LP admits several structural properties that play a crucial role in the design and analysis of our algorithm. We also extend these techniques to get a (1 – 1/e)-approximation algorithm for maximum bipartite matching in the price-of-information model introduced by Singla [25], who also used the basic greedy algorithm to give a (1/2)-approximation.