Smallest singular value of sparse random matrices

Type: Article

Publication Date: 2012-01-01

Citations: 28

DOI: https://doi.org/10.4064/sm212-3-1

Abstract

We extend probability estimates on the smallest singular value of random matrices with independent entries to a class of sparse random matrices. We show that one can relax a previously used condition of uniform boundedness of the variances from below. This allows us to consider matrices with null entries or, more generally, with entries having small variances. Our results do not assume identical distribution of the entries of a random matrix and help to clarify the role of the variances of the entries. We also show that it is enough to require boundedness from above of the r-th moment, r > 2, of the corresponding entries. AMS 2010 Classification: 46B06, 60B20, 15B52

Locations

  • arXiv (Cornell University) - View - PDF
  • Studia Mathematica - View

Similar Works

Action Title Year Authors
+ Smallest singular value of sparse random matrices 2011 A. G. Litvak
Omar Rivasplata
+ Smallest singular value of sparse random matrices 2011 Alexander E. Litvak
Omar Rivasplata
+ PDF Chat The smallest singular value of random rectangular matrices with no moment assumptions on entries 2016 Konstantin Tikhomirov
+ The smallest singular value of random rectangular matrices with no moment assumptions on entries 2014 Konstantin Tikhomirov
+ The smallest singular value of random rectangular matrices with no moment assumptions on entries 2014 Konstantin Tikhomirov
+ On the Largest and the Smallest Singular Value of Sparse Rectangular Random Matrices 2022 F. Götze
А. Н. Тихомиров
+ PDF Chat Smallest singular value of a random rectangular matrix 2009 Mark Rudelson
Roman Vershynin
+ PDF Chat On the largest and the smallest singular value of sparse rectangular random matrices 2023 Friedrich Götze
А. Н. Тихомиров
+ PDF Chat An upper bound on the smallest singular value of a square random matrix 2018 Kateryna Tatarko
+ An upper bound on the smallest singular value of a square random matrix 2018 Kateryna Tatarko
+ An upper bound on the smallest singular value of a square random matrix 2018 Kateryna Tatarko
+ PDF Chat Random Matrices: the Distribution of the Smallest Singular Values 2010 Terence Tao
Van Vu
+ Lower bounds for the smallest singular value of structured random matrices 2016 Nicholas A. Cook
+ Small Ball Probability of the Least Singular Value Ofnormalized Random Matrices: Universal Lower Bounds 2022 Davide Maran
+ Lower bounds for the smallest singular value of structured random matrices 2016 Nicholas A. Cook
+ The least singular value of a random symmetric matrix 2022 Marcelo Campos
Matthew Jenssen
Marcus Michelen
Julian Sahasrabudhe
+ PDF Chat Lower bounds for the smallest singular value of structured random matrices 2018 Nicholas A. Cook
+ PDF Chat The least singular value of a random square matrix is <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mi mathvariant="normal">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2008 Mark Rudelson
Roman Vershynin
+ PDF Chat The least singular value of a random symmetric matrix 2024 Marcelo Campos
Matthew Jenssen
Marcus Michelen
Julian Sahasrabudhe
+ The limit of the smallest singular value of random matrices with i.i.d. entries 2015 Konstantin Tikhomirov