Nonlinear Elliptic Boundary Value Problems at Resonance with Nonlinear Wentzell Boundary Conditions

Type: Article

Publication Date: 2017-01-01

Citations: 2

DOI: https://doi.org/10.1155/2017/5196513

Abstract

Given a bounded domain <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi mathvariant="normal">Ω</mml:mi><mml:mo>⊂</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:math> with a Lipschitz boundary <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mo>∂</mml:mo><mml:mi mathvariant="normal">Ω</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:mo>,</mml:mo><mml:mo>+</mml:mo><mml:mi mathvariant="normal">∞</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>, we consider the quasilinear elliptic equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub><mml:mfenced separators="|"><mml:mrow><mml:mi>u</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mi>f</mml:mi></mml:math> in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi mathvariant="normal">Ω</mml:mi></mml:mrow></mml:math> complemented with the generalized Wentzell-Robin type boundary conditions of the form <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mi>b</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:msup><mml:mrow><mml:mfenced open="|" close="|" separators="|"><mml:mrow><mml:mo>∇</mml:mo><mml:mi>u</mml:mi></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>-</mml:mo><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msup><mml:msub><mml:mrow><mml:mo>∂</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="bold">n</mml:mi></mml:mrow></mml:msub><mml:mi>u</mml:mi><mml:mo>-</mml:mo><mml:mi>ρ</mml:mi><mml:mi>b</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:msub><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">Γ</mml:mi></mml:mrow></mml:msub><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub><mml:mfenced separators="|"><mml:mrow><mml:mi>u</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mi>g</mml:mi></mml:math> on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mo>∂</mml:mo><mml:mi mathvariant="normal">Ω</mml:mi></mml:math>. In the first part of the article, we give necessary and sufficient conditions in terms of the given functions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mrow><mml:mi>g</mml:mi></mml:mrow></mml:math> and the nonlinearities <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mrow><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:mrow><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, for the solvability of the above nonlinear elliptic boundary value problems with the nonlinear boundary conditions. In other words, we establish a sort of “nonlinear Fredholm alternative” for our problem which extends the corresponding Landesman and Lazer result for elliptic problems with linear homogeneous boundary conditions. In the second part, we give some additional results on existence and uniqueness and we study the regularity of the weak solutions for these classes of nonlinear problems. More precisely, we show some global a priori estimates for these weak solutions in an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:mrow><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">∞</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>-setting.

Locations

  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Advances in Mathematical Physics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Two-dimensional nonlinear boundary value problems for elliptic equations 1987 Gary M. Lieberman
+ PDF Chat Nontrivial solutions of semilinear elliptic equations with continuous or discontinuous nonlinearities 1992 Noriko Mizoguchi
+ PDF Chat On a superlinear elliptic boundary value problem at resonance 1979 P. J. McKenna
+ Boundary blow-up in nonlinear elliptic equations of Bieberbach–Rademacher type 2007 Florica C. Cîrstea
Vicenţiu D. Rădulescu
+ Nonlinear Elliptic Boundary Value Problems At Resonance. 1975 Howard Shaw
+ Sharp boundary concentration for a two-dimensional nonlinear Neumann problem<sup>*</sup> 2024 Francesca De Marchis
Habib Fourti
Isabella Ianni
+ PDF Chat Elliptic problems with mixed nonlinearities and potentials singular at the origin and at the boundary of the domain 2023 Bartosz Bieganowski
Adam Konysz
+ Nonlinear elliptic boundary value problems at resonance with nonlinear Wentzell boundary conditions 2011 Ciprian G. Gal
Mahamadi Warma
+ Nonlinear elliptic boundary value problems at resonance with nonlinear Wentzell boundary conditions 2011 Ciprian G. Gal
Mahamadi Warma
+ Nonlinear elliptic boundary value problems at resonance 1990 Martin Schechter
+ PDF Chat Quasilinear problems with nonlinear boundary conditions in higher-dimensional thin domains with corrugated boundaries 2023 Jean Carlos Nakasato
Marcone C. Pereira
+ PDF Chat Global analysis of two-parameter elliptic eigenvalue problems 1984 Heinz‐Otto Peitgen
Klaus Schmitt
+ Quasilinear elliptic problems in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math> involving oscillatory nonlinearities 2007 Alexandru Kristály
Gheorghe Moroşanu
Stepan Tersian
+ A nonlinear elliptic boundary value problem at resonance 1977 Howard Shaw
+ On elliptic equations with singular potentials and nonlinear boundary conditions 2018 Lucas C. F. Ferreira
Sérgio L. N. Neves
+ Resonance Problems For Nonlinear Elliptic Equations With Nonlinear Boundary Conditions 2015 Nsoki Mavinga
M. N. Nkashama
+ PDF Chat Nonlinear 𝑝-Laplacian problems on unbounded domains 1992 Lao Sen Yu
+ PDF Chat The structure of a nonlinear elliptic operator 1993 P. T. Church
E. N. Dancer
J. G. Timourian
+ Elliptic fourth-order operators with Wentzell boundary conditions on Lipschitz domains 2024 David Ploß
+ PDF Chat The Neumann Problem for a Degenerate Elliptic System Near Resonance 2017 Yu-Cheng An
Hong-Min Suo