Polynomial multiple recurrence over rings of integers

Type: Article

Publication Date: 2015-02-06

Citations: 5

DOI: https://doi.org/10.1017/etds.2014.138

Abstract

We generalize the polynomial Szemerédi theorem to intersective polynomials over the ring of integers of an algebraic number field, by which we mean polynomials having a common root modulo every ideal. This leads to the existence of new polynomial configurations in positive-density subsets of $\mathbb{Z}^{m}$ and strengthens and extends recent results of Bergelson, Leibman and Lesigne [Intersective polynomials and the polynomial Szemerédi theorem. Adv. Math. 219 (1) (2008), 369–388] on polynomials over the integers.

Locations

  • Ergodic Theory and Dynamical Systems - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Polynomial multiple recurrence over rings of integers 2014 Vitaly Bergelson
Donald Robertson
+ Polynomial multiple recurrence over rings of integers 2014 Vitaly Bergelson
Donald Robertson
+ Intersective polynomials and the polynomial Szemerédi theorem 2008 Vitaly Bergelson
A. Leibman
Emmanuel Lesigne
+ PDF Chat Intersective polynomials and polynomial Szemeredi theorem 2008 Vitaly Bergelson
A. Leibman
Emmanuel Lesigne
+ Polynomial multiple recurrence and large intersections in rings of integers 2021 Ethan Ackelsberg
Vitaly Bergelson
+ PDF Chat Multiple recurrence and popular differences for polynomial patterns in rings of integers 2023 Ethan Ackelsberg
Vitaly Bergelson
+ Multiple recurrence and popular differences for polynomial patterns in rings of integers 2021 Ethan Ackelsberg
Vitaly Bergelson
+ PDF Chat ON NUMBERS WITH POLYNOMIAL IMAGE COPRIME WITH THE TH TERM OF A LINEAR RECURRENCE 2018 Daniele Mastrostefano
Carlo Sanna
+ Multidimensional polynomial Szemerédi theorem in finite fields for polynomials of distinct degrees 2023 Borys Kuca
+ A classification and study of intersective polynomials 2013 Michelle Mason Soule
+ PDF Chat A nilpotent IP polynomial multiple recurrence theorem 2014 Pavel Zorin‐Kranich
+ Polynomial Theory 1997 Manfred R. Schroeder
+ Polynomial Theory 1986 Manfred R. Schroeder
+ The Pintz–Steiger–Szemerédi estimate for intersective quadratic polynomials in function fields 2021 LI Guoquan
+ A Quantitative Result on Diophantine Approximation for Intersective Polynomials 2014 Neil Lyall
Alex Rice
+ A Quantitative Result on Diophantine Approximation for Intersective Polynomials 2014 Neil Lyall
Alex Rice
+ Polynomial Theory 1984 Manfred R. Schroeder
+ Multiple Complete Rational Arithmetic Sums of Polynomial Values 2018 В. Н. Чубариков
+ Polynomial multiplicities over finite fields and intersection sets 1992 Aiden A. Bruen
+ Lacunary Polynomial Compositions 2021 Alessio Moscariello