Univalent higher categories via complete Semi-Segal types

Type: Article
Publication Date: 2017-12-27
Citations: 21
DOI: https://doi.org/10.1145/3158132

Abstract

Category theory in homotopy type theory is intricate as categorical laws can only be stated "up to homotopy", and thus require coherences. The established notion of a univalent category (as introduced by Ahrens et al.) solves this by considering only truncated types, roughly corresponding to an ordinary category. This fails to capture many naturally occurring structures, stemming from the fact that the naturally occurring structures in homotopy type theory are not ordinary, but rather higher categories. Out of the large variety of approaches to higher category theory that mathematicians have proposed, we believe that, for type theory, the simplicial strategy is best suited. Work by Lurie and Harpaz motivates the following definition. Given the first ( n +3) levels of a semisimplicial type S , we can equip S with three properties: first, contractibility of the types of certain horn fillers; second, a completeness property; and third, a truncation condition. We call this a complete semi-Segal n -type . This is very similar to an earlier suggestion by Schreiber. The definition of a univalent (1-) category by Ahrens et al. can easily be extended or restricted to the definition of a univalent n -category (more precisely, ( n ,1)-category) for n ∈ {0,1,2}, and we show that the type of complete semi-Segal n -types is equivalent to the type of univalent n -categories in these cases. Thus, we believe that the notion of a complete semi-Segal n -type can be taken as the definition of a univalent n -category. We provide a formalisation in the proof assistant Agda using a completely explicit representation of semi-simplicial types for levels up to 4.

Locations

  • Proceedings of the ACM on Programming Languages
  • arXiv (Cornell University)
  • Repository@Nottingham (University of Nottingham)
  • University of Birmingham Research Portal (University of Birmingham)

Ask a Question About This Paper

Summary

Login to see paper summary

Category theory in homotopy type theory is intricate as categorical laws can only be stated "up to homotopy", and thus require coherences. The established notion of a univalent category (Ahrens, … Category theory in homotopy type theory is intricate as categorical laws can only be stated "up to homotopy", and thus require coherences. The established notion of a univalent category (Ahrens, Kapulkin, Shulman) solves this by considering only truncated types, roughly corresponding to an ordinary category. This fails to capture many naturally occurring structures, stemming from the fact that the naturally occurring structures in homotopy type theory are not ordinary, but rather higher categories. Out of the large variety of approaches to higher category theory that mathematicians have proposed, we believe that, for type theory, the simplicial strategy is best suited. Work by Lurie and Harpaz motivates the following definition. Given the first (n+3) levels of a semisimplicial type S, we can equip S with three properties: first, contractibility of the types of certain horn fillers; second, a completeness property; and third, a truncation condition. We call this a complete semi-Segal n-type. This is very similar to an earlier suggestion by Schreiber. The definition of a univalent (1-) category can easily be extended or restricted to the definition of a univalent n-category (more precisely, (n,1)-category) for n in {0,1,2}, and we show that the type of complete semi-Segal n-types is equivalent to the type of univalent $n$-categories in these cases. Thus, we believe that the notion of a complete semi-Segal n-type can be taken as the definition of a univalent n-category. We provide a formalisation in the proof assistant Agda using a completely explicit representation of semi-simplicial types for levels up to 4.
Category theory in homotopy type theory is intricate as categorical laws can only be stated to homotopy, and thus require coherences. The established notion of a univalent category (Ahrens, Kapulkin, … Category theory in homotopy type theory is intricate as categorical laws can only be stated to homotopy, and thus require coherences. The established notion of a univalent category (Ahrens, Kapulkin, Shulman) solves this by considering only truncated types, roughly corresponding to an ordinary category. This fails to capture many naturally occurring structures, stemming from the fact that the naturally occurring structures in homotopy type theory are not ordinary, but rather higher categories. Out of the large variety of approaches to higher category theory that mathematicians have proposed, we believe that, for type theory, the simplicial strategy is best suited. Work by Lurie and Harpaz motivates the following definition. Given the first (n+3) levels of a semisimplicial type S, we can equip S with three properties: first, contractibility of the types of certain horn fillers; second, a completeness property; and third, a truncation condition. We call this a complete semi-Segal n-type. This is very similar to an earlier suggestion by Schreiber. The definition of a univalent (1-) category can easily be extended or restricted to the definition of a univalent n-category (more precisely, (n,1)-category) for n in {0,1,2}, and we show that the type of complete semi-Segal n-types is equivalent to the type of univalent $n$-categories in these cases. Thus, we believe that the notion of a complete semi-Segal n-type can be taken as the definition of a univalent n-category. We provide a formalisation in the proof assistant Agda using a completely explicit representation of semi-simplicial types for levels up to 4.
Category theory in homotopy type theory is intricate as categorical laws can only be stated “up to homotopy”, and thus require coherences. The established notion of a univalent category (Ahrens … Category theory in homotopy type theory is intricate as categorical laws can only be stated “up to homotopy”, and thus require coherences. The established notion of a univalent category (Ahrens et al. 2015) solves this by considering only truncated types, and it roughly corresponds to an ordinary category. The drawback is that univalent categories fail to capture many naturally occurring structures, such as type universes or the type of univalent categories themselves. This stems from the fact that the natural notion of a category in homotopy type theory is not that of an ordinary, but rather a higher category.
Homotopy type theory (HoTT) is a branch of mathematics that combines and benefits from a variety of fields, most importantly homotopy theory, higher dimensional category theory, and, of course, type … Homotopy type theory (HoTT) is a branch of mathematics that combines and benefits from a variety of fields, most importantly homotopy theory, higher dimensional category theory, and, of course, type theory. We present several original results in homotopy type theory which are related to the truncation level of types, a concept due to Voevodsky. To begin, we give a few simple criteria for determining whether a type is 0-truncated (a set), inspired by a well-known theorem by Hedberg, and these criteria are then generalised to arbitrary n. This naturally leads to a discussion of functions that are weakly constant, i.e. map any two inputs to equal outputs. A weakly constant function does in general not factor through the propositional truncation of its domain, something that one could expect if the function really did not depend on its input. However, the factorisation is always possible for weakly constant endofunctions, which makes it possible to define a propositional notion of anonymous existence. We additionally find a few other non-trivial special cases in which the factorisation works. Further, we present a couple of constructions which are only possible with the judgmental computation rule for the truncation. Among these is an invertibility puzzle that seemingly inverts the canonical map from Nat to the truncation of Nat, which is perhaps surprising as the latter type is equivalent to the unit type. A further result is the construction of strict n-types in Martin-Lof type theory with a hierarchy of univalent universes (and without higher inductive types), and a proof that the universe U(n) is not n-truncated. This solves a hitherto open problem of the 2012/13 special year program on Univalent Foundations at the Institute for Advanced Study (Princeton). The main result of this thesis is a generalised universal property of the propositional truncation, using a construction of coherently constant functions. We show that the type of such coherently constant functions between types A and B, which can be seen as the type of natural transformations between two diagrams over the simplex category without degeneracies (i.e. finite non-empty sets and strictly increasing functions), is equivalent to the type of functions with the truncation of A as domain and B as codomain. In the general case, the definition of natural transformations between such diagrams requires an infinite tower of conditions, which exists if the type theory has Reedy limits of diagrams over the ordinal omega. If B is an n-type for some given finite n, (non-trivial) Reedy limits are unnecessary, allowing us to construct functions from the truncation of A to B in homotopy type theory without further assumptions. To obtain these results, we develop some theory on equality diagrams, especially equality semi-simplicial types. In particular, we show that the semi-simplicial equality type over any type satisfies the Kan condition, which can be seen as the simplicial version of the fundamental result by Lumsdaine, and by van den Berg and Garner, that types are weak omega-groupoids. Finally, we present some results related to formalisations of infinite structures that seem to be impossible to express internally. To give an example, we show how the simplex category can be implemented so that the categorical laws hold strictly. In the presence of very dependent types, we speculate that this makes the Reedy approach for the famous open problem of defining semi-simplicial types work.
Simplicial type theory extends homotopy type theory with a directed path type which internalizes the notion of a homomorphism within a type. This concept has significant applications both within mathematics … Simplicial type theory extends homotopy type theory with a directed path type which internalizes the notion of a homomorphism within a type. This concept has significant applications both within mathematics -- where it allows for synthetic (higher) category theory -- and programming languages -- where it leads to a directed version of the structure identity principle. In this work, we construct the first types in simplicial type theory with non-trivial homomorphisms. We extend simplicial type theory with modalities and new reasoning principles to obtain triangulated type theory in order to construct the universe of discrete types $\mathcal{S}$. We prove that homomorphisms in this type correspond to ordinary functions of types i.e., that $\mathcal{S}$ is directed univalent. The construction of $\mathcal{S}$ is foundational for both of the aforementioned applications of simplicial type theory. We are able to define several crucial examples of categories and to recover important results from category theory. Using $\mathcal{S}$, we are also able to define various types whose usage is guaranteed to be functorial. These provide the first complete examples of the proposed directed structure identity principle.
This thesis introduces the idea of two-level type theory, an extension of Martin-Löf type theory that adds a notion of strict equality as an internal primitive. A type theory with … This thesis introduces the idea of two-level type theory, an extension of Martin-Löf type theory that adds a notion of strict equality as an internal primitive. A type theory with a strict equality alongside the more conventional form of equality, the latter being of fundamental importance for the recent innovation of homotopy type theory (HoTT), was first proposed by Voevodsky, and is usually referred to as HTS. Here, we generalise and expand this idea, by developing a semantic framework that gives a systematic account of type formers for two-level systems, and proving a conservativity result relating back to a conventional type theory like HoTT. Finally, we show how a two-level theory can be used to provide partial solutions to open problems in HoTT. In particular, we use it to construct semi-simplicial types, and lay out the foundations of an internal theory of $(\infty, 1)$-categories.
The intended model of the homotopy type theories used in Univalent Foundations is the infinity-category of homotopy types, also known as infinity-groupoids. The problem of higher structures is that of … The intended model of the homotopy type theories used in Univalent Foundations is the infinity-category of homotopy types, also known as infinity-groupoids. The problem of higher structures is that of constructing the homotopy types needed for mathematics, especially those that aren't sets. The current repertoire of constructions, including the usual type formers and higher inductive types, suffice for many but not all of these. We discuss the problematic cases, typically those involving an infinite hierarchy of coherence data such as semi-simplicial types, as well as the problem of developing the meta-theory of homotopy type theories in Univalent Foundations. We also discuss some proposed solutions.
It is well known that univalence is incompatible with uniqueness of identity proofs (UIP), the axiom that all types are h-sets. This is due to finite h-sets having non-trivial automorphisms … It is well known that univalence is incompatible with uniqueness of identity proofs (UIP), the axiom that all types are h-sets. This is due to finite h-sets having non-trivial automorphisms as soon as they are not h-propositions. A natural question is then whether univalence restricted to h-propositions is compatible with UIP. We answer this affirmatively by constructing a model where types are elements of a closed universe defined as a higher inductive type in homotopy type theory. This universe has a path constructor for simultaneous "partial" univalent completion, i.e., restricted to h-propositions. More generally, we show that univalence restricted to $(n-1)$-types is consistent with the assumption that all types are $n$-truncated. Moreover we parametrize our construction by a suitably well-behaved container, to abstract from a concrete choice of type formers for the universe.
Abstract When working in homotopy type theory and univalent foundations, the traditional role of the category of sets, $\mathcal{Set}$ , is replaced by the category $\mathcal{hSet}$ of homotopy sets (h-sets); … Abstract When working in homotopy type theory and univalent foundations, the traditional role of the category of sets, $\mathcal{Set}$ , is replaced by the category $\mathcal{hSet}$ of homotopy sets (h-sets); types with h-propositional identity types. Many of the properties of $\mathcal{Set}$ hold for $\mathcal{hSet}$ ((co)completeness, exactness, local cartesian closure, etc.). Notably, however, the univalence axiom implies that $\mathsf{Ob}\,\mathcal{hSet}$ is not itself an h-set, but an h-groupoid. This is expected in univalent foundations, but it is sometimes useful to also have a stricter universe of sets, for example, when constructing internal models of type theory. In this work, we equip the type of iterative sets $\mathsf{V}^0$ , due to Gylterud ((2018). The Journal of Symbolic Logic 83 (3) 1132–1146) as a refinement of the pioneering work of Aczel ((1978). Logic Colloquium’77 , Studies in Logic and the Foundations of Mathematics, vol. 96, Elsevier, 55–66.) on universes of sets in type theory, with the structure of a Tarski universe and show that it satisfies many of the good properties of h-sets. In particular, we organize $\mathsf{V}^0$ into a (non-univalent strict) category and prove that it is locally cartesian closed. This enables us to organize it into a category with families with the structure necessary to model extensional type theory internally in HoTT/UF. We do this in a rather minimal univalent type theory with W-types, in particular we do not rely on any HITs, or other complex extensions of type theory. Furthermore, the construction of $\mathsf{V}^0$ and the model is fully constructive and predicative, while still being very convenient to work with as the decoding from $\mathsf{V}^0$ into h-sets commutes definitionally for all type constructors. Almost all of the paper has been formalized in $\texttt{Agda}$ using the $\texttt{agda}$ - $\texttt{unimath}$ library of univalent mathematics.
It is well known that univalence is incompatible with uniqueness of identity proofs (UIP), the axiom that all types are h-sets. This is due to finite h-sets having non-trivial automorphisms … It is well known that univalence is incompatible with uniqueness of identity proofs (UIP), the axiom that all types are h-sets. This is due to finite h-sets having non-trivial automorphisms as soon as they are not h-propositions. A natural question is then whether univalence restricted to h-propositions is compatible with UIP. We answer this affirmatively by constructing a model where types are elements of a closed universe defined as a higher inductive type in homotopy type theory. This universe has a path constructor for simultaneous partial univalent completion, i.e., restricted to h-propositions. More generally, we show that univalence restricted to $(n-1)$-types is consistent with the assumption that all types are $n$-truncated. Moreover we parametrize our construction by a suitably well-behaved container, to abstract from a concrete choice of type formers for the universe.
When working in Homotopy Type Theory and Univalent Foundations, the traditional role of the category of sets, Set, is replaced by the category hSet of homotopy sets (h-sets); types with … When working in Homotopy Type Theory and Univalent Foundations, the traditional role of the category of sets, Set, is replaced by the category hSet of homotopy sets (h-sets); types with h-propositional identity types. Many of the properties of Set hold for hSet ((co)completeness, exactness, local cartesian closure, etc.). Notably, however, the univalence axiom implies that Ob(hSet) is not itself an h-set, but an h-groupoid. This is expected in univalent foundations, but it is sometimes useful to also have a stricter universe of sets, for example when constructing internal models of type theory. In this work, we equip the type of iterative sets V0, due to Gylterud (2018) as a refinement of the pioneering work of Aczel (1978) on universes of sets in type theory, with the structure of a Tarski universe and show that it satisfies many of the good properties of h-sets. In particular, we organize V0 into a (non-univalent strict) category and prove that it is locally cartesian closed. This enables us to organize it into a category with families with the structure necessary to model extensional type theory internally in HoTT/UF. We do this in a rather minimal univalent type theory with W-types, in particular we do not rely on any HITs, or other complex extensions of type theory. Furthermore, the construction of V0 and the model is fully constructive and predicative, while still being very convenient to work with as the decoding from V0 into h-sets commutes definitionally for all type constructors. Almost all of the paper has been formalized in Agda using the agda-unimath library of univalent mathematics.
We propose foundations for a synthetic theory of $(\infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe … We propose foundations for a synthetic theory of $(\infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary types. We define \emph{Segal types}, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define \emph{Rezk types}, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities --- a ``local univalence'' condition. And we define \emph{covariant fibrations}, which are type families varying functorially over a Segal type, and prove a ``dependent Yoneda lemma'' that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk types to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using ``extension types'' that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk types correspond to Segal spaces and complete Segal spaces.
Many introductions to homotopy type theory and the univalence axiom gloss over the semantics of this new formal system in traditional set-based foundations. This expository article, written as lecture notes … Many introductions to homotopy type theory and the univalence axiom gloss over the semantics of this new formal system in traditional set-based foundations. This expository article, written as lecture notes to accompany a 3-part mini course delivered at the Logic and Higher Structures workshop at CIRM-Luminy, attempts to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any $\infty$-topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.
In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of … In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of semi-simplicial types. More generally, it is difficult and often impossible to handle towers of coherences. To address this, we propose a 2-level theory which features both strict and weak equality. This can essentially be represented as two type theories: an one, containing a strict equality type former, and an one, which is some version of HoTT. Our type theory is inspired by Voevosky's suggestion of a homotopy type system (HTS) which currently refers to a range of ideas. A core insight of our proposal is that we no not need any form of equality reflection in order to achieve what HTS was suggested for. Instead, having unique identity proofs in the outer type theory is sufficient, and it also has the meta-theoretical advantage of not breaking decidability of type checking. The inner theory can be an easily justifiable extensions of HoTT, allowing the construction of infinite structures which are considered impossible in plain HoTT. Alternatively, we can set the inner theory to be exactly the current standard formulation of HoTT, in which case our system can be thought of as a type-theoretic framework for working with schematic definitions in HoTT. As demonstrations, we define semi-simplicial types and formalise constructions of Reedy fibrant diagrams.
In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of … In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of semi-simplicial types. More generally, it is difficult and often impossible to handle towers of coherences. To address this, we propose a 2-level theory which features both strict and weak equality. This can essentially be represented as two type theories: an "outer" one, containing a strict equality type former, and an "inner" one, which is some version of HoTT. Our type theory is inspired by Voevosky's suggestion of a homotopy type system (HTS) which currently refers to a range of ideas. A core insight of our proposal is that we no not need any form of equality reflection in order to achieve what HTS was suggested for. Instead, having unique identity proofs in the outer type theory is sufficient, and it also has the meta-theoretical advantage of not breaking decidability of type checking. The inner theory can be an easily justifiable extensions of HoTT, allowing the construction of "infinite structures" which are considered impossible in plain HoTT. Alternatively, we can set the inner theory to be exactly the current standard formulation of HoTT, in which case our system can be thought of as a type-theoretic framework for working with "schematic" definitions in HoTT. As demonstrations, we define semi-simplicial types and formalise constructions of Reedy fibrant diagrams.
We propose foundations for a synthetic theory of $(\infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe … We propose foundations for a synthetic theory of $(\infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary types. We define Segal types, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define Rezk types, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities - a "local univalence" condition. And we define covariant fibrations, which are type families varying functorially over a Segal type, and prove a "dependent Yoneda lemma" that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk types to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using "extension types" that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk types correspond to Segal spaces and complete Segal spaces.
The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops … The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.
We propose foundations for a synthetic theory of $(\infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe … We propose foundations for a synthetic theory of $(\infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary types. We define Segal types, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define Rezk types, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities - a local univalence condition. And we define covariant fibrations, which are type families varying functorially over a Segal type, and prove a dependent Yoneda lemma that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using extension types that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk correspond to Segal spaces and complete Segal spaces.
Abstract Many introductions to homotopy type theory and the univalence axiom gloss over the semantics of this new formal system in traditional set‐based foundations. This expository article, written as lecture … Abstract Many introductions to homotopy type theory and the univalence axiom gloss over the semantics of this new formal system in traditional set‐based foundations. This expository article, written as lecture notes to accompany a three‐part mini course delivered at the Logic and Higher Structures workshop at CIRM‐Luminy, attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any ‐topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning.
Using dependent type theory to formalise the syntax of dependent type theory is a very active topic of study and goes under the name of "type theory eating itself" or … Using dependent type theory to formalise the syntax of dependent type theory is a very active topic of study and goes under the name of "type theory eating itself" or "type theory in type theory." Most approaches are at least loosely based on Dybjer's categories with families (CwF's) and come with a type CON of contexts, a type family TY indexed over it modelling types, and so on. This works well in versions of type theory where the principle of unique identity proofs (UIP) holds. In homotopy type theory (HoTT) however, it is a long-standing and frequently discussed open problem whether the type theory "eats itself" and can serve as its own interpreter. The fundamental underlying difficulty seems to be that categories are not suitable to capture a type theory in the absence of UIP. In this paper, we develop a notion of $\infty$-categories with families ($\infty$-CwF's). The approach to higher categories used relies on the previously suggested semi-Segal types, with a new construction of identity substitutions that allow for both univalent and non-univalent variations. The type-theoretic universe as well as the internalised syntax are models, although it remains a conjecture that the latter is initial. To circumvent the known unsolved problem of constructing semisimplicial types, the definition is presented in two-level type theory (2LTT). Apart from introducing $\infty$-CwF's, the paper explains the shortcomings of 1-categories in type theory without UIP as well as the difficulties of and approaches to internal higher-dimensional categories.
We define and develop two-level type theory (2LTT), a version of Martin-L\"of type theory which combines two different type theories. We refer to them as the inner and the outer … We define and develop two-level type theory (2LTT), a version of Martin-L\"of type theory which combines two different type theories. We refer to them as the inner and the outer type theory. In our case of interest, the inner theory is homotopy type theory (HoTT) which may include univalent universes and higher inductive types. The outer theory is a traditional form of type theory validating uniqueness of identity proofs (UIP). One point of view on it is as internalised meta-theory of the inner type theory. There are two motivations for 2LTT. Firstly, there are certain results about HoTT which are of meta-theoretic nature, such as the statement that semisimplicial types up to level $n$ can be constructed in HoTT for any externally fixed natural number $n$. Such results cannot be expressed in HoTT itself, but they can be formalised and proved in 2LTT, where $n$ will be a variable in the outer theory. This point of view is inspired by observations about conservativity of presheaf models. Secondly, 2LTT is a framework which is suitable for formulating additional axioms that one might want to add to HoTT. This idea is heavily inspired by Voevodsky's Homotopy Type System (HTS), which constitutes one specific instance of a 2LTT. HTS has an axiom ensuring that the type of natural numbers behaves like the external natural numbers, which allows the construction of a universe of semisimplicial types. In 2LTT, this axiom can be stated simply be asking the inner and outer natural numbers to be isomorphic. After defining 2LTT, we set up a collection of tools with the goal of making 2LTT a convenient language for future developments. As a first such application, we develop the theory of Reedy fibrant diagrams in the style of Shulman. Continuing this line of thought, we suggest a definition of (infinity,1)-category and give some examples.
Using dependent type theory to formalise the syntax of dependent type theory is a very active topic of study and goes under the name of "type theory eating itself" or … Using dependent type theory to formalise the syntax of dependent type theory is a very active topic of study and goes under the name of "type theory eating itself" or "type theory in type theory." Most approaches are at least loosely based on Dybjer's categories with families (CwF's) and come with a type Con of contexts, a type family Ty indexed over it modelling types, and so on. This works well in versions of type theory where the principle of unique identity proofs (UIP) holds. In homotopy type theory (HoTT) however, it is a long-standing and frequently discussed open problem whether the type theory "eats itself" and can serve as its own interpreter. The fundamental underlying difficulty seems to be that categories are not suitable to capture a type theory in the absence of UIP. In this paper, we develop a notion of ∞-categories with families (∞-CwF's). The approach to higher categories used relies on the previously suggested semi-Segal types, with a new construction of identity substitutions that allow for both univalent and non-univalent variations. The type-theoretic universe as well as the internalised (set-level) syntax are models, although it remains a conjecture that the latter is initial. To circumvent the known unsolved problem of constructing semisimplicial types, the definition is presented in two-level type theory (2LTT). Apart from introducing ∞-CwF's, the paper explains the shortcomings of 1-categories in type theory without UIP as well as the difficulties of and approaches to internal higher-dimensional categories.
The study of equality types is central to homotopy type theory. Characterizing these types is often tricky, and various strategies, such as the encode-decode method, have been developed. We prove … The study of equality types is central to homotopy type theory. Characterizing these types is often tricky, and various strategies, such as the encode-decode method, have been developed. We prove a theorem about equality types of coequalizers and pushouts, reminiscent of an induction principle and without any restrictions on the truncation levels. This result makes it possible to reason directly about certain equality types and to streamline existing proofs by eliminating the necessity of auxiliary constructions. To demonstrate this, we give a very short argument for the calculation of the fundamental group of the circle (Licata and Shulman [1]), and for the fact that pushouts preserve embeddings. Further, our development suggests a higher version of the Seifert-van Kampen theorem, and the set-truncation operator maps it to the standard Seifert-van Kampen theorem (due to Favonia and Shulman [2]). We provide a formalization of the main technical results in the proof assistant Lean.
Polynomials in a category have been studied as a generalization of the traditional notion in mathematics. Their construction has recently been extended to higher groupoids, as formalized in homotopy type … Polynomials in a category have been studied as a generalization of the traditional notion in mathematics. Their construction has recently been extended to higher groupoids, as formalized in homotopy type theory, by Finster, Mimram, Lucas and Seiller, thus resulting in a cartesian closed bicategory. We refine and extend their work in multiple directions. We begin by generalizing the construction of the free symmetric monoid monad on types in order to handle arities in an arbitrary universe. Then, we extend this monad to the (wild) category of spans of types, and thus to a comonad by self-duality. Finally, we show that the resulting Kleisli category is equivalent to the traditional category of polynomials. This thus establishes polynomials as a (homotopical) model of linear logic. In fact, we explain that it is closely related to a bicategorical model of differential linear logic introduced by Melli\`es.
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples … We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of univalent bicategories, we develop the notion of `displayed bicategories', an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. Displayed bicategories allow us to construct univalent bicategories in a modular fashion. We demonstrate the applicability of this notion, and prove that several bicategories of interest are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Furthermore, we show that every bicategory with univalent hom-category is weakly equivalent to a univalent bicategory. All of our work is formalized in Coq as part of the UniMath library of univalent mathematics.
The study of equality types is central to homotopy type theory. Characterizing these types is often tricky, and various strategies, such as the encode-decode method, have been developed. We prove … The study of equality types is central to homotopy type theory. Characterizing these types is often tricky, and various strategies, such as the encode-decode method, have been developed. We prove a theorem about equality types of coequalizers and pushouts, reminiscent of an induction principle and without any restrictions on the truncation levels. This result makes it possible to reason directly about certain equality types and to streamline existing proofs by eliminating the necessity of auxiliary constructions. To demonstrate this, we give a very short argument for the calculation of the fundamental group of the circle (Licata and Shulman '13), and for the fact that pushouts preserve embeddings. Further, our development suggests a higher version of the Seifert-van Kampen theorem, and the set-truncation operator maps it to the standard Seifert-van Kampen theorem (due to Favonia and Shulman '16). We provide a formalization of the main technical results in the proof assistant Lean.
In this paper, we study finitary 1-truncated higher inductive types (HITs) in homotopy type theory. We start by showing that all these types can be constructed from the groupoid quotient. … In this paper, we study finitary 1-truncated higher inductive types (HITs) in homotopy type theory. We start by showing that all these types can be constructed from the groupoid quotient. We define an internal notion of signatures for HITs, and for each signature, we construct a bicategory of algebras in 1-types and in groupoids. We continue by proving initial algebra semantics for our signatures. After that, we show that the groupoid quotient induces a biadjunction between the bicategories of algebras in 1-types and in groupoids. Then we construct a biinitial object in the bicategory of algebras in groupoids, which gives the desired algebra. From all this, we conclude that all finitary 1-truncated HITs can be constructed from the groupoid quotient. We present several examples of HITs which are definable using our notion of signature. In particular, we show that each signature gives rise to a HIT corresponding to the freely generated algebraic structure over it. We also start the development of universal algebra in 1-types. We show that the bicategory of algebras has PIE limits, i.e. products, inserters and equifiers, and we prove a version of the first isomorphism theorem for 1-types. Finally, we give an alternative characterization of the foundamental groups of some HITs, exploiting our construction of HITs via the groupoid quotient. All the results are formalized over the UniMath library of univalent mathematics in Coq.
Given a type A in homotopy type theory (HoTT), we can define the free ∞-group on A as the loop space of the suspension of A + 1. Equivalently, this … Given a type A in homotopy type theory (HoTT), we can define the free ∞-group on A as the loop space of the suspension of A + 1. Equivalently, this free higher group can be defined as a higher inductive type F(A) with constructors unit: F(A), cons: A~F(A)~F(A), and conditions saying that every cons(a) is an auto-equivalence on F(A). Assuming that A is a set (i.e. satisfies the principle of unique identity proofs), we are interested in the question whether F(A) is a set as well, which is very much related to an open problem in the HoTT book [22, Ex. 8.2]. We show an approximation to the question, namely that the fundamental groups of F(A) are trivial, i.e. that ||F(A)||1 is a set.
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples … We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of univalent bicategories in a modular fashion, we develop displayed bicategories, an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. We demonstrate the applicability of this notion, and prove that several bicategories of interest are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Furthermore, we show that every bicategory with univalent hom-categories is weakly equivalent to a univalent bicategory. All of our work is formalized in Coq as part of the UniMath library of univalent mathematics.
Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more than one sort and the later sorts can be indexed over the previous ones. In … Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more than one sort and the later sorts can be indexed over the previous ones. In addition, equality constructors are also allowed. We work in a setting with uniqueness of identity proofs, hence we use the term QIIT instead of higher inductive-inductive type. An example of a QIIT is the well-typed (intrinsic) syntax of type theory quotiented by conversion. In this paper first we specify finitary QIITs using a domain-specific type theory which we call the theory of signatures. The syntax of the theory of signatures is given by a QIIT as well. Then, using this syntax we show that all specified QIITs exist and they have a dependent elimination principle. We also show that algebras of a signature form a category with families (CwF) and use the internal language of this CwF to show that dependent elimination is equivalent to initiality.
Cube categories are used to encode higher-dimensional categorical structures. They have recently gained significant attention in the community of homotopy type theory and univalent foundations, where types carry the structure … Cube categories are used to encode higher-dimensional categorical structures. They have recently gained significant attention in the community of homotopy type theory and univalent foundations, where types carry the structure of such higher groupoids. Bezem, Coquand, and Huber have presented a constructive model of univalence using a specific cube category, which we call the BCH category. The higher categories encoded with the BCH category have the property that all morphisms are invertible, mirroring the fact that equality is symmetric. This might not always be desirable: the field of directed type theory considers a notion of equality that is not necessarily invertible. This motivates us to suggest a category of twisted cubes which avoids built-in invertibility. Our strategy is to first develop several alternative (but equivalent) presentations of the BCH category using morphisms between suitably defined graphs. Starting from there, a minor modification allows us to define our category of twisted cubes. We prove several first results about this category, and our work suggests that twisted cubes combine properties of cubes with properties of globes and simplices (tetrahedra).
The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined … The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined in a non-algebraic and space-based style, as well as models of higher-order theories such as topological spaces. In particular, we formulate a general definition of indiscernibility for objects of any such structure, and a corresponding univalence condition that generalizes Rezk's completeness condition for Segal spaces and ensures that all equivalences of structures are levelwise equivalences. Our work builds on Makkai's First-Order Logic with Dependent Sorts, but is expressed in Voevodsky's Univalent Foundations (UF), extending previous work on the Structure Identity Principle and univalent categories in UF. This enables indistinguishability to be expressed simply as identification, and yields a formal theory that is interpretable in classical homotopy theory, but also in other higher topos models. It follows that Univalent Foundations is a fully equivalence-invariant foundation for higher-categorical mathematics, as intended by Voevodsky.
Abstract In homotopy type theory, few constructions have proved as troublesome as the smash product. While its definition is just as direct as in classical mathematics, one quickly realises that … Abstract In homotopy type theory, few constructions have proved as troublesome as the smash product. While its definition is just as direct as in classical mathematics, one quickly realises that in order to define and reason about functions over iterations of it, one has to verify an exponentially growing number of coherences. This has led to crucial results concerning smash products remaining open. One particularly important such result is the fact that the smash product forms a (1-coherent) symmetric monoidal product on the universe of pointed types. This fact was used, without a complete proof, by, for example, Brunerie ((2016) PhD thesis, Université Nice Sophia Antipolis) to construct the cup product on integral cohomology and is, more generally, a fundamental result in traditional algebraic topology. In this paper, we salvage the situation by introducing a simple informal heuristic for reasoning about functions defined over iterated smash products. We then use the heuristic to verify, for example, the hexagon and pentagon identities, thereby obtaining a proof of symmetric monoidality. We also provide a formal statement of the heuristic in terms of an induction principle concerning the construction of homotopies of functions defined over iterated smash products. The key results presented here have been formalised in the proof assistant Cubical Agda.
Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed … Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support equality constructors, thus generalizing higher inductive types of homotopy type theory. Examples that make use of both features are the Cauchy real numbers and the well-typed syntax of type theory where conversion rules are given as equality constructors. In this paper we propose a general definition of HIITs using a small type theory, named the theory of signatures. A context in this theory encodes a HIIT by listing the constructors. We also compute notions of induction and recursion for HIITs, by using variants of syntactic logical relation translations. Building full categorical semantics and constructing initial algebras is left for future work. The theory of HIIT signatures was formalised in Agda together with the syntactic translations. We also provide a Haskell implementation, which takes signatures as input and outputs translation results as valid Agda code.
In this paper, we show that all finitary 1-truncated higher inductive types (HITs) can be constructed from the groupoid quotient. We start by defining internally a notion of signatures for … In this paper, we show that all finitary 1-truncated higher inductive types (HITs) can be constructed from the groupoid quotient. We start by defining internally a notion of signatures for HITs, and for each signature, we construct a bicategory of algebras in 1-types and in groupoids. We continue by proving initial algebra semantics for our signatures. After that, we show that the groupoid quotient induces a biadjunction between the bicategories of algebras in 1-types and in groupoids. We finish by constructing a biinitial object in the bicategory of algebras in groupoids. From all this, we conclude that all finitary 1-truncated HITs can be constructed from the groupoid quotient. All the results are formalized over the UniMath library of univalent mathematics in Coq.
The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined … The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined in a non-algebraic and space-based style, as well as models of higher-order theories such as topological spaces. In particular, we formulate a general definition of indiscernibility for objects of any such structure, and a corresponding univalence condition that generalizes Rezk’s completeness condition for Segal spaces and ensures that all equivalences of structures are levelwise equivalences. Our work builds on Makkai’s First-Order Logic with Dependent Sorts, but is expressed in Voevodsky’s Univalent Foundations (UF), extending previous work on the Structure Identity Principle and univalent categories in UF. This enables indistinguishability to be expressed simply as identification, and yields a formal theory that is interpretable in classical homotopy theory, but also in other higher topos models. It follows that Univalent Foundations is a fully equivalence-invariant foundation for higher-categorical mathematics, as intended by Voevodsky.
This paper develops the foundations of a simplicial theory of weak omega-categories, which builds upon the insights originally expounded by Ross Street in his 1987 paper on oriented simplices. The … This paper develops the foundations of a simplicial theory of weak omega-categories, which builds upon the insights originally expounded by Ross Street in his 1987 paper on oriented simplices. The resulting theory of weak complicial sets provides a common generalisation of the theories of (strict) omega-categories, Kan complexes and Joyal's quasi-categories. We generalise a number of results due to the current author with regard to complicial sets and strict omega-categories to provide an armoury of well behaved technical devices, such as joins and Gray tensor products, which will be used to study these the weak omega-category theory of these structures in a series of companion papers. In particular, we establish their basic homotopy theory by constructing a Quillen model structure on the category of stratified simplicial sets whose fibrant objects are the weak complicial sets. As a simple corollary of this work we provide an independent construction of Joyal's model structure on simplicial sets for which the fibrant objects are the quasi-categories.
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical … Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics.
This purpose of this book is twofold: to provide a general introduction to higher category theory (using the formalism of quasicategories or weak Kan complexes), and to apply this theory … This purpose of this book is twofold: to provide a general introduction to higher category theory (using the formalism of quasicategories or weak Kan complexes), and to apply this theory to the study of higher versions of Grothendieck topoi. A few applications to classical topology are included.
We introduce some classes of genuine higher categories in homotopy type theory, defined as well-behaved subcategories of the category of types. We give several examples, and some techniques for showing … We introduce some classes of genuine higher categories in homotopy type theory, defined as well-behaved subcategories of the category of types. We give several examples, and some techniques for showing other things are not examples. While only a small part of what is needed, it is a natural construction, and may be instructive for people seeking to provide a fully general construction.
In this paper we give a summary of the comparisons between different definitions of so-called (∞, 1)-categories, which are considered to be models for ∞-categories whose n-morphisms are all invertible … In this paper we give a summary of the comparisons between different definitions of so-called (∞, 1)-categories, which are considered to be models for ∞-categories whose n-morphisms are all invertible for n > 1. They are also, from the viewpoint of homotopy theory, models for the homotopy theory of homotopy theories. The four different structures, all of which are equivalent, are simplicial categories, Segal categories, complete Segal spaces, and quasi-categories.
We develop category theory within Univalent Foundations, which is a foundational system for mathematics based on a homotopical interpretation of dependent type theory. In this system, we propose a definition … We develop category theory within Univalent Foundations, which is a foundational system for mathematics based on a homotopical interpretation of dependent type theory. In this system, we propose a definition of ‘category’ for which equality and equivalence of categories agree. Such categories satisfy a version of the univalence axiom, saying that the type of isomorphisms between any two objects is equivalent to the identity type between these objects; we call them ‘saturated’ or ‘univalent’ categories. Moreover, we show that any category is weakly equivalent to a univalent one in a universal way. In homotopical and higher-categorical semantics, this construction corresponds to a truncated version of the Rezk completion for Segal spaces, and also to the stack completion of a prestack.
This thesis introduces the idea of two-level type theory, an extension of Martin-Löf type theory that adds a notion of strict equality as an internal primitive. A type theory with … This thesis introduces the idea of two-level type theory, an extension of Martin-Löf type theory that adds a notion of strict equality as an internal primitive. A type theory with a strict equality alongside the more conventional form of equality, the latter being of fundamental importance for the recent innovation of homotopy type theory (HoTT), was first proposed by Voevodsky, and is usually referred to as HTS. Here, we generalise and expand this idea, by developing a semantic framework that gives a systematic account of type formers for two-level systems, and proving a conservativity result relating back to a conventional type theory like HoTT. Finally, we show how a two-level theory can be used to provide partial solutions to open problems in HoTT. In particular, we use it to construct semi-simplicial types, and lay out the foundations of an internal theory of $(\infty, 1)$-categories.
Topologists are sometimes interested in space-valued diagrams over a given index category, but it is tricky to say what such a diagram even is if we look for a notion … Topologists are sometimes interested in space-valued diagrams over a given index category, but it is tricky to say what such a diagram even is if we look for a notion that is stable under equivalence. The same happens in (homotopy) type theory, where it is known only for special cases how one can define a type of type-valued diagrams over a given index category. We offer several constructions. We first show how to define homotopy coherent diagrams which come with all higher coherence laws explicitly, with two variants that come with assumption on the index category or on the type theory. Further, we present a construction of diagrams over certain Reedy categories. As an application, we add the degeneracies to the well-known construction of semisimplicial types, yielding a construction of simplicial types up to any given finite level. The current paper is only an extended abstract, and a full version is to follow. In the full paper, we will show that the different notions of diagrams are equivalent to each other and to the known notion of Reedy fibrant diagrams whenever the statement makes sense. In the current paper, we only sketch some core ideas of the proofs.
We propose foundations for a synthetic theory of $(\infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe … We propose foundations for a synthetic theory of $(\infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary types. We define Segal types, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define Rezk types, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities - a local univalence condition. And we define covariant fibrations, which are type families varying functorially over a Segal type, and prove a dependent Yoneda lemma that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using extension types that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk correspond to Segal spaces and complete Segal spaces.
The Univalent Foundations requires a logic that allows us to define structures on homotopy types, similar to how first-order logic with equality ($\text{FOL}_=$) allows us to define structures on sets. … The Univalent Foundations requires a logic that allows us to define structures on homotopy types, similar to how first-order logic with equality ($\text{FOL}_=$) allows us to define structures on sets. We develop the syntax, semantics and deductive system for such a logic, which we call first-order logic with isomorphism ($\text{FOL}_{\cong}$). The syntax of $\text{FOL}_{\cong}$ extends $\text{FOL}_{=}$ in two ways. First, by incorporating into its signatures a notion of dependent sorts along the lines of Makkai's FOLDS as well as a notion of an $h$-level of each sort. Second, by specifying three new logical sorts within these signatures: isomorphism sorts, reflexivity predicates and transport structure. The semantics for $\text{FOL}_{\cong}$ are then defined in homotopy type theory with the isomorphism sorts interpreted as identity types, reflexivity predicates as relations picking out the trivial path, and transport structure as transport along a path. We then define a deductive system $\mathcal{D}_{\cong}$ for $\text{FOL}_{\cong}$ that encodes the sense in which the inhabitants of isomorphism sorts really do behave like isomorphisms and prove soundness of the rules of $\mathcal{D}_{\cong}$ with respect to its homotopy semantics. Finally, as an application, we prove that precategories, strict categories and univalent categories are axiomatizable in $\text{FOL}_{\cong}$.
Our goal in this article is to give an expository account of some recent work on the classification of topological field theories.More specifically, we will outline the proof of a … Our goal in this article is to give an expository account of some recent work on the classification of topological field theories.More specifically, we will outline the proof of a version of the cobordism hypothesis conjectured by Baez and Dolan in [2]. The tangle hypothesis 272 References 279Terminology.Unless otherwise specified, we will use the word manifold to refer to a compact smooth manifold M , possibly with boundary (or with corners).If M is a manifold, we will denote its boundary by ∂ M. We will say that M is closed if the boundary ∂ M is empty.For a brief description of how the ideas of this paper generalize to manifolds which are not smooth, we refer the reader to Remark 2.4.30.Throughout this paper, we will make informal use of the language of higher category theory.We will always use the term n-category to refer to what is sometimes called a weak n-category: that is, a collection of objects {X, Y, Z, . ..} together with an (n -1)-category Map(X, Y ) for every pair of objects X and Y , which are equipped with a notion of composition which is associative up to coherent isomorphism.We refer the reader to 1.3 for an informal discussion and 2.1 for the outline of a more precise definition.If C is a category (or a higher category) equipped with an associative and unital tensor product ⊗, we will let 1 denote the unit object of C.Let V be a finite-dimensional real vector space.By an inner product on V we will mean a symmetric bilinear form b : V × V → R which is positivedefinite (so that b(v, v) > 0 for v = 0).More generally, if X is a topological space and ζ is a real vector bundle on X, then by an inner product on ζ we will mean an inner product on each fiber ζ x , which depends continuously on the point x ∈ X.
This paper presents a novel connection between homotopical algebra and mathematical logic. It is shown that a form of intensional type theory is valid in any Quillen model category, generalizing … This paper presents a novel connection between homotopical algebra and mathematical logic. It is shown that a form of intensional type theory is valid in any Quillen model category, generalizing the Hofmann-Streicher groupoid model of Martin-Loef type theory.
Inspired by Lurie's theory of quasi-unital algebras we prove an analogous result for 1-categories.By constructing a suitable model category of non-unital complete Segal spaces, we show that the unital structure … Inspired by Lurie's theory of quasi-unital algebras we prove an analogous result for 1-categories.By constructing a suitable model category of non-unital complete Segal spaces, we show that the unital structure of an 1-category can be uniquely recovered from the underlying non-unital structure once suitable candidates for units have been identified.The main result of this paper can be used to produce a proof of the 1-dimensional cobordism hypothesis, as described in a forthcoming paper of the author.
We describe a homotopical version of the relational and gluing models of type theory, and generalize it to inverse diagrams and oplax limits. Our method uses the Reedy homotopy theory … We describe a homotopical version of the relational and gluing models of type theory, and generalize it to inverse diagrams and oplax limits. Our method uses the Reedy homotopy theory on inverse diagrams, and relies on the fact that Reedy fibrant diagrams correspond to contexts of a certain shape in type theory. This has two main applications. First, by considering inverse diagrams in Voevodsky's univalent model in simplicial sets, we obtain new models of univalence in a number of (∞, 1)-toposes; this answers a question raised at the Oberwolfach workshop on homotopical type theory. Second, by gluing the syntactic category of univalent type theory along its global sections functor to groupoids, we obtain a partial answer to Voevodsky's homotopy-canonicity conjecture: in 1-truncated type theory with one univalent universe of sets, any closed term of natural number type is homotopic to a numeral.
We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie's definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself … We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie's definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck's approach to the definition of ω-groupoids. In this setup, ω-categories are defined as presheaves preserving globular colimits over a certain category, called a coherator. The coherator encodes all operations required to be present in an ω-category: both the compositions of pasting schemes as well as their coherences. Our main contribution is to provide a canonical type-theoretical characterization of pasting schemes as contexts which can be derived from inference rules. Finally, we present an implementation of a corresponding proof system.