Random Multiplicative Functions in Short Intervals

Type: Article

Publication Date: 2012-01-01

Citations: 37

DOI: https://doi.org/10.1093/imrn/rnr023

Abstract

We consider random multiplicative functions taking the values ±1. Using Stein's method for normal approximation, we prove a central limit theorem for the sum of such multiplicative functions in appropriate short intervals.

Locations

  • International Mathematics Research Notices - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Random multiplicative functions in short intervals 2010 Sourav Chatterjee
K. Soundararajan
+ Random multiplicative functions in short intervals 2010 Sourav Chatterjee
K. Soundararajan
+ Central limit theorems for random multiplicative functions 2023 K. Soundararajan
Max Wenqiang Xu
+ Random Functions and Limit Theorems 1992 Yu. V. Prokhorov
+ The variance of a general class of multiplicative functions in short intervals 2022 Pranendu Darbar
Mithun Kumar Das
+ Limiting distributions of additive functions in short intervals 1990 K.‐H. Indlekofer
+ Approximation of random functions 1977 William H. Ling
H.W McLaughlin
Mary Lynn Smith
+ Multiplicative functions and random processes 1997 Gintautas Bareikis
Eugenijus Manstavičius
+ LIMIT THEOREMS FOR ADDITIVE-MULTIPLICATIVE RANDOM SEQUENCES. 1967 A. S. Paulson
V. R. R. Uppuluri
+ Small deviations of sums of random variables 2016 Brian Garnett
+ Functions of Random Variables 1987 J.J. Komo
+ Functions of Random Variables 1999
+ Functions of Random Variables 2005 G. P. Beaumont
+ Functions of Random Variables 2000
+ Functions of Random Variables 2018 Frank Beichelt
+ Functions of Random Variables 2005
+ Functions of Random Variables 2013 Milan Holický
+ Functions of Random Variables 1973 Paul E. Pfeiffer
DAVID A. SCHUM
+ PDF Chat Fourier uniformity of bounded multiplicative functions in short intervals on average 2019 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
+ Sums of Random Variables 2002 Rajan Srinivasan