On the Secrecy Gain of $\ell$-Modular Lattices

Type: Article

Publication Date: 2018-01-01

Citations: 4

DOI: https://doi.org/10.1137/17m1154187

Abstract

We show that for every $\ell>1$, there is a counterexample to the $\ell$-modular secrecy function conjecture by Oggier, Solé, and Belfiore [IEEE Trans. Inform. Theory, 62 (2016), pp. 5690--5708]. These counterexamples all satisfy the modified conjecture by Ernvall-Hytönen and Sethuraman [IEEE Trans. Inform. Theory, 62 (2016), pp. 4514--4522]. Furthermore, we provide a method to prove or disprove the modified conjecture for any given $\ell$-modular lattice rationally equivalent to a suitable amount of copies of $\mathbb{Z}\oplus \sqrt{\ell}\,\mathbb{Z}$ with $\ell \in \{3,5,7,11,23\}$. We also provide a variant of the method for strongly $\ell$-modular lattices when $\ell\in \{6,14,15\}$.

Locations

  • SIAM Journal on Discrete Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On the secrecy gain of $\ell$-modular lattices 2017 Esa V. Vesalainen
Anne-Maria Ernvall-Hytönen
+ On the secrecy gain of $\ell$-modular lattices 2017 Esa V. Vesalainen
Anne-Maria Ernvall-Hytönen
+ Counterexample to the Generalized Belfiore–Solé Secrecy Function Conjecture for <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math> </inline-formula>-Modular Lattices 2016 Anne-Maria Ernvall-Hytönen
B. A. Sethuraman
+ Counterexample to the $l$-modular Belfiore-Solé Conjecture 2014 Anne-Maria Ernvall-Hytönen
B. A. Sethuraman
+ PDF Chat On the Maximum Theta Series over Unimodular Lattices 2024 Maiara F. Bollauf
Hsuan-Yin Lin
+ On a conjecture by Belfiore and Sol\'e on some lattices 2011 Anne-Maria Ernvall-Hytönen
+ PDF Chat On a Conjecture by Belfiore and Solé on Some Lattices 2012 Anne-Maria Ernvall-Hytönen
+ Secrecy Gain of Formally Unimodular Lattices from Codes over the Integers Modulo 4 2023 Maiara F. Bollauf
Hsuan-Yin Lin
Øyvind Ytrehus
+ On a conjecture by Belfiore and Solé on some lattices 2011 Anne-Maria Ernvall-Hytönen
+ A new class of three-weight linear codes from weakly regular plateaued functions 2017 Sihem Mesnager
Ferruh Özbudak
Ahmet Sınak
+ A new class of three-weight linear codes from weakly regular plateaued functions. 2017 Sihem Mesnager
Ferruh Özbudak
Ahmet Sınak
+ The Hidden Lattice Problem 2021 Luca Notarnicola
Gabor Wiese
+ The Hidden Lattice Problem 2021 Luca Notarnicola
Gabor Wiese
+ On Analysis of Recovering Short Generator Problems via Upper and Lower Bounds of Dirichlet L-Functions: Part 1 2017 Shingo Sugiyama
+ PDF Chat Secrecy Gain of Formally Unimodular Lattices From Codes Over the Integers Modulo 4 2024 Maiara F. Bollauf
Hsuan-Yin Lin
Øyvind Ytrehus
+ Linear codes with few weights from non-weakly regular plateaued functions 2023 Yadi Wei
Jiaxin Wang
Fang‐Wei Fu
+ Minimal Linear Codes From Weakly Regular Plateaued Balanced Functions 2020 Ahmet Sınak
+ Minimal Linear Codes From Weakly Regular Plateaued Balanced Functions 2020 Ahmet Sınak
+ PDF Chat Unimodular lattices for the Gaussian Wiretap Channel 2010 Jean-Claude Belfiore
Patrick Solé
+ PDF Chat Several Classes of Minimal Linear Codes With Few Weights From Weakly Regular Plateaued Functions 2019 Sihem Mesnager
Ahmet Sınak