Almost all eigenfunctions of a rational polygon are uniformly distributed

Type: Article

Publication Date: 2012-01-17

Citations: 36

DOI: https://doi.org/10.4171/jst/23

Abstract

We consider an orthonormal basis of eigenfunctions of the Dirichlet Laplacian for a rational polygon. The modulus squared of the eigenfunctions defines a sequence of probability measures. We prove that this sequence contains a density-one subsequence that converges to Lebesgue measure.

Locations

  • Journal of Spectral Theory - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Almost all eigenfunctions of a rational polygon are uniformly distributed 2011 Jens Marklof
Zeév Rudnick
+ Almost all eigenfunctions of a rational polygon are uniformly distributed 2011 Jens Marklof
Zeév Rudnick
+ Dirichlet series of functions, regular in convex polygons 1980 Yu. I. Mel'nik
+ Asymptotic behavior of the dirichlet kernel of fourier sums with respect to a polygon 1988 A. Podkorytov
+ PDF Chat Spectrum of the Laplacian on regular polyhedra 2020 Evan Greif
Daniel T. Kaplan
Robert S. Strichartz
Samuel C. Wiese
+ Asymptotics for orthonormal rational functions on the interval 2011 Karl Deckers
+ Delocalisation of eigenfunctions on large genus random surfaces 2020 Joe Thomas
+ Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution 2013 Junehyuk Jung
Steve Zelditch
+ Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution 2013 Junehyuk Jung
Steve Zelditch
+ Counting nodal components of boundary-adapted arithmetic random waves 2019 James Cann
+ Spectrum of the Laplacian on Regular Polyhedra 2018 Evan Greif
Daniel M. Kaplan
Robert S. Strichartz
Samuel C. Wiese
+ Spectrum of the Laplacian on Regular Polyhedra 2018 Evan Greif
Daniel T. Kaplan
Robert S. Strichartz
Samuel C. Wiese
+ Representation of regular functions by Dirichlet series in closed convex polygons 1978 Yu. I. Mel'nik
+ A Remainder Estimate for The Asymptotic Law for The Distribution of Elgenvalues of The Laplacian in a PolyGonal Domain 1982 Fumioki Asakura
+ Nodal length fluctuations for arithmetic random waves 2011 Manjunath Krishnapur
Pär Kurlberg
Igor Wigman
+ Expansions of functions into Dirichlet series on closed convex polygons 1979 А. М. Седлетский
+ Nodal length fluctuations for arithmetic random waves 2011 Manjunath Krishnapur
Pär Kurlberg
Igor Wigman
+ Points on nodal lines with given direction. 2018 Zeév Rudnick
Igor Wigman
+ Efficiency and localisation for the first Dirichlet eigenfunction 2019 M. van den Berg
Francesco Della Pietra
Giuseppina di Blasio
Nunzia Gavitone
+ Efficiency and localisation for the first Dirichlet eigenfunction 2019 M. van den Berg
Francesco Della Pietra
Giuseppina di Blasio
Nunzia Gavitone