Fourier multipliers on weighted $L^p$ spaces

Type: Article

Publication Date: 2014-01-01

Citations: 8

DOI: https://doi.org/10.4310/mrl.2014.v21.n4.a11

Abstract

The paper provides a complement to the classical results on Fourier multipliers on L p spaces.In particular, we prove that if q ∈ (1, 2) and a function m : R → C is of bounded q-variation uniformly on the dyadic intervals in R, i.e., m ∈ V q (D), then m is a Fourier multiplier on L p (R, w dx) for every p ≥ q and every weight w satisfying Muckenhoupt's A p/q -condition.We also obtain a higherdimensional counterpart of this result as well as of a result by E. Berkson and T.A. Gillespie including the case of the V q (D) spaces with q > 2. New weighted estimates for modified Littlewood-Paley functions are also provided. 1 Introduction and statement of results 807 2 Proofs of Theorems B(i) and A 811 3 Proof of Theorem B(ii) 817 4 Higher-dimensional analogue of Theorem A 824

Locations

  • Mathematical Research Letters - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Fourier multipliers on weighted $L^p$ spaces 2014 Sebastian Król
+ Fourier multipliers on weighted $L^p$ spaces 2014 Sebastian Król
+ PDF Chat Multipliers of weighted $l^{p}$ spaces 1991 Peter Detre
+ Vector-valued Fourier multipliers in $L_p$-spaces with power weights 2018 Jan Prüß
+ Multipliers for weighted L-spaces, transference, and the q-variation of functions 1998 Earl Berkson
T. A. Gillespie
+ Fourier multipliers on power‐weighted Hardy spaces 2008 T. S. Quek
+ Operator-valued fourier multipliers on multi-dimensional hardy spaces 2011 Shangquan Bu
+ Operator-Valued Fourier Multipliers on Multi-dimensional Hardy Spaces 2011 Shangquan
 Bu
+ A note on the restriction of Fourier multipliers from weighted Lp spaces to Lorentz spaces 2013 Yūichi Kanjin
Ayako Kanno
Enji Sato
+ PDF Chat Fourier multipliers on weighted $L^p$-spaces 1999 T. S. Quek
+ Operator-valued Fourier multiplier theorems on L p -spaces on $ \mathbb{T}^d $ 2004 Shang Quan Bu
J.-M. Kim
+ On fourier multipliers in weighted Triebel–Lizorkin spaces 2002 DE Edmunds
Vakhtang Kokilashvili
Alexander Meskhi
+ PDF Chat Fourier Multipliers on a Vector-Valued Function Space 2021 Bae Jun Park
+ Littlewood-Paley and Multiplier Theorems on Weighted L p Spaces 1980 Douglas S. Kurtz
+ Operator-valued Fourier multiplier theorems on Lp(X) and geometry of Banach spaces 2003 Maria Girardi
Lutz Weis
+ On Dilations of Fourier Multipliers on Weighted Lebesgue Spaces 2024 Oleksiy Karlovych
Eugene Shargorodsky
+ Multipliers of Hardy Spaces 2004 Beth Osikiewicz
+ Littlewood–Paley and Spectral Multipliers on Weighted L p Spaces 2012 Ruming Gong
Lixin Yan
+ MULTIPLIERS AND TENSOR PRODUCTS OF WEIGHTED L p -SPACES 2001 S. Özto
A. Turan Gürkanlı
+ PDF Chat Fourier multipliers on spaces of distributions 1986 Wilson Lamb