Two-parameter version of Bourgain's inequality: Rational frequencies

Type: Article

Publication Date: 2017-11-14

Citations: 3

DOI: https://doi.org/10.1016/j.aim.2017.10.033

Locations

  • Advances in Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ Two-parameter version of Bourgain's inequality: Rational frequencies 2015 Ben Krause
Mariusz Mirek
Bartosz Trojan
+ Bergman-Bourgain-Brezis-type inequality 2021 Francesca Da Lio
Tristan Rivière
Jerome Wettstein
+ Best constant in a three-parameter Poincaré inequality 2011 Igor V. Gerasimov
Alexander I. Nazarov
+ Bergman-Bourgain-Brezis-type Inequality 2020 Francesca Da Lio
Tristan Rivière
Jerome Wettstein
+ A Bernstein-type inequality for rational functions in weighted Bergman spaces 2012 Anton Baranov
Rachid Zarouf
+ Bourgain-Brezis type inequality with explicit constants 2007 Vladimir Maz’ya
+ Bernstein-type inequalities for rational functions in weighted Bergman spaces and applications 2010 Rachid Zarouf
+ A Turán type inequality for rational functions with prescribed poles 2005 Dansheng Yu
S. P. Zhou
+ A Turán type inequality for rational functions with prescribed poles 2005 Dansheng Yu
S. P. Zhou
+ The growth order of the optimal constants in Turán-Erőd type inequalities in $L^q(K,μ)$ 2023 Polina Yu. Glazyrina
Yu. S. Goryacheva
Sz. Gy. Révész
+ Hardy-Hilbert's Inequalities With Two Parameters 2007 Jingshi Xu
+ Fischer–Muszély Additivity: A Half Century Story 2017 Roman Ger
+ A note on an inequality of Bourgain and Brezis 2015 Zhibing Zhang
+ Hardy-Littlewood inequalities for two-parameter Vilenkin-Fourier coefficients 2001 Petr Šimon
Ferenc Weisz
+ An analogue of the concept of functions with bounded mean oscillation 1977 L. G. Gurov
Yu. G. Reshetnyak
+ A geometric constant induced by the Dunkl-Williams inequality (Nonlinear Analysis and Convex Analysis) 2013 Hiroyasu Mizuguchi
Kichi-Suke Saito
Ryotaro Tanaka
+ A geometric constant induced by the Dunkl-Williams inequality (非線形解析学と凸解析学の研究 : RIMS研究集会報告集) 2013 洋康 水口
吉助 斎藤
亮太朗 田中
+ PDF Chat A property of the real not regular functions 𝐶^{∞} 1966 H. Hornich
+ PDF Chat A simple proof of an inequality of Bourgain, Brezis and Mironescu 2003 Jean Van Schaftingen
+ PDF Chat Inequalities relative to two-parameter Vilenkin-Fourier coefficients 1991 Ferenc Weisz