On exact correlation functions in SU(N) N = 2 $$ \mathcal{N}=2 $$ superconformal QCD

Type: Article

Publication Date: 2015-11-01

Citations: 68

DOI: https://doi.org/10.1007/jhep11(2015)198

Abstract

We consider the exact coupling constant dependence of extremal correlation functions of $$ \mathcal{N}=2 $$ chiral primary operators in 4d $$ \mathcal{N}=2 $$ superconformal gauge theories with gauge group SU(N) and N f = 2N massless fundamental hypermultiplets. The 2- and 3-point functions, viewed as functions of the exactly marginal coupling constant and theta angle, obey the tt * equations. In the case at hand, the tt * equations form a set of complicated non-linear coupled matrix equations. We point out that there is an ad hoc self-consistent ansatz that reduces this set of partial differential equations to a sequence of decoupled semi-infinite Toda chains, similar to the one encountered previously in the special case of SU(2) gauge group. This ansatz requires a surprising new non-renormalization theorem in $$ \mathcal{N}=2 $$ superconformal field theories. We derive a general 3-loop perturbative formula for 2- and 3-point functions in the $$ \mathcal{N}=2 $$ chiral ring of the SU(N) theory, and in all explicitly computed examples we find agreement with the tt * equations, as well as the above-mentioned ansatz. This is suggestive evidence for an interesting non-perturbative conjecture about the structure of the $$ \mathcal{N}=2 $$ chiral ring in this class of theories. We discuss several implications of this conjecture. For example, it implies that the holonomy of the vector bundles of chiral primaries over the superconformal manifold is reducible. It also implies that a specific subset of extremal correlation functions can be computed in the SU(N) theory using information solely from the S 4 partition function of the theory obtained by supersymmetric localization.

Locations

  • Journal of High Energy Physics - View - PDF
  • Durham Research Online (Durham University) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • University of Groningen research database (University of Groningen / Centre for Information Technology) - View - PDF
  • Data Archiving and Networked Services (DANS) - View - PDF
  • Repository for Publications and Research Data (ETH Zurich) - View - PDF
  • Durham Research Online (Durham University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat tt * equations, localization and exact chiral rings in 4d N $$ \mathcal{N} $$ =2 SCFTs 2015 Marco Baggio
Vasilis Niarchos
Kyriakos Papadodimas
+ PDF Chat Large-N correlation functions in N $$ \mathcal{N} $$ = 2 superconformal QCD 2017 Marco Baggio
Vasilis Niarchos
Kyriakos Papadodimas
Gideon Vos
+ PDF Chat Exact Correlation Functions in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:math>Superconformal QCD 2014 Marco Baggio
Vasilis Niarchos
Kyriakos Papadodimas
+ PDF Chat Large N correlation functions in superconformal field theories 2016 Diego Rodr谋虂guez-G贸mez
Jorge G. Russo
+ PDF Chat Large N correlation functions N $$ \mathcal{N} $$ = 2 superconformal quivers 2017 Alessandro Pini
Diego Rodr谋虂guez-G贸mez
Jorge G. Russo
+ PDF Chat Universality of Toda equation in $$ \mathcal{N}=2 $$ superconformal field theories 2019 Antoine Bourget
Diego Rodr谋虂guez-G贸mez
Jorge G. Russo
+ PDF Chat Correlation functions of Coulomb branch operators 2017 Efrat Gerchkovitz
Jaume Gomis
Nafiz Ishtiaque
Avner Karasik
Zohar Komargodski
Silviu S. Pufu
+ Spin Chains in N=2 Superconformal Theories: from the Z_2 Quiver to Superconformal QCD 2010 Abhijit Gadde
Elli Pomoni
Leonardo Rastelli
+ PDF Chat A limit for large R-charge correlators in $$ \mathcal{N} $$ = 2 theories 2018 Antoine Bourget
Diego Rodr谋虂guez-G贸mez
Jorge G. Russo
+ PDF Chat Chiral correlators in $$ \mathcal{N} $$ = 2 superconformal quivers 2021 Francesco Galvagno
Michelangelo Preti
+ Large R-charge EFT correlators in N=2 SQCD 2021 Simeon Hellerman
Domenico Orlando
+ PDF Chat On exact correlation functions of chiral ring operators in 2d$$ \mathcal{N}=\left(2,\ 2\right) $$ SCFTs via localization 2018 Jin Chen
+ Chiral correlators in $\mathcal{N}=2$ superconformal quivers 2020 Francesco Galvagno
Michelangelo Preti
+ PDF Chat Differential operators for superconformal correlation functions 2020 Andrea Manenti
+ Exact strong coupling results in $\cal N$=2 $Sp(2N)$ superconformal gauge theory from localization 2022 M. Beccaria
G.P. Korchemsky
A.A. Tseytlin
+ Correlators in superconformal quivers made QUICK 2022 Michelangelo Preti
+ PDF Chat Bootstrapping correlation functions in N = 4 $$ \mathcal{N}=4 $$ SYM 2016 Dmitry Chicherin
Reza Doobary
Burkhard Eden
Paul Heslop
G.P. Korchemsky
E. Sokatchev
+ On the exponentially small corrections to ${\cal N} = 2$ superconformal correlators at large R-charge 2021 Simeon Hellerman
+ PDF Chat Strong coupling expansion in $\mathbf{\mathcal N=2}$ superconformal theories and the Bessel kernel 2022 M. Beccaria
G.P. Korchemsky
A.A. Tseytlin
+ Wilson loop correlators at strong coupling in $\mathcal{N}=2$ quiver gauge theories 2023 Alessandro Pini
Paolo Vallarino