Riesz bases of exponentials on multiband spectra

Type: Article

Publication Date: 2012-01-18

Citations: 23

DOI: https://doi.org/10.1090/s0002-9939-2012-11138-4

Abstract

Let $S$ be the union of finitely many disjoint intervals on the real line. Suppose that there are two real numbers $\alpha, \beta$ such that the length of each interval belongs to $Z \alpha + Z \beta$. We use quasicrystals to construct a discrete set of real frequencies such that the corresponding system of exponentials is a Riesz basis in the space $L^2(S)$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Bases of complex exponentials with restricted supports 2022 Dae Gwan Lee
Götz E. Pfander
David F. Walnut
+ PDF Chat Bases of complex exponentials with restricted supports 2022 Dae Gwan Lee
Götz E. Pfander
David F. Walnut
+ Riesz bases, Meyer's quasicrystals, and bounded remainder sets 2016 Sigrid Grepstad
Nir Lev
+ Riesz bases, Meyer's quasicrystals, and bounded remainder sets 2016 Sigrid Grepstad
Nir Lev
+ PDF Chat Riesz bases, Meyer’s quasicrystals, and bounded remainder sets 2016 Sigrid Grepstad
Nir Lev
+ Riesz bases of exponentials for partitions of intervals 2019 E Pfander Gotz
Shauna Revay
Walnut David
+ Riesz bases of exponentials and sine-type functions 1988 Sergei Avdonin
I. JoĂł
+ Riesz bases of exponential functions in L2 1977 Sergei Avdonin
+ PDF Chat A note on exponential Riesz bases 2021 Andrei Caragea
Dae Gwan Lee
+ Unions of exponential Riesz bases 2022 Dae Gwan Lee
+ Exponential bases for partitions of intervals 2021 Götz E. Pfander
Shauna Revay
David F. Walnut
+ Exponential Riesz bases in $L^2$ on two interval 2022 Yurii Belov
Mikhail Mironov
+ PDF Chat Multiple lattice tiles and Riesz bases of exponentials 2014 Mihail N. Kolountzakis
+ Multiple lattice tiles and Riesz bases of exponentials 2013 Mihail N. Kolountzakis
+ Multiple lattice tiles and Riesz bases of exponentials 2013 Mihail N. Kolountzakis
+ Unions of exponential Riesz bases 2024 Dae Gwan Lee
+ Uniformly bounded families of Riesz bases of exponentials, sines, and cosines 2010 Rostyslav Hryniv
+ PDF Chat Exponential bases for partitions of intervals 2023 Götz E. Pfander
Shauna Revay
David F. Walnut
+ Exponential Riesz bases, discrepancy of irrational rotations and BMO 2010 Gady Kozma
Nir Lev
+ Exponential Riesz bases, discrepancy of irrational rotations and BMO 2010 Gady Kozma
Nir Lev