Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems

Type: Preprint

Publication Date: 2014-01-01

Citations: 88

DOI: https://doi.org/10.48550/arxiv.1411.1134

View

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems 2014 Christopher De
Kunle Olukotun
Christopher Ré
+ On the Convergence of Stochastic Gradient Descent with Low-Rank Projections for Convex Low-Rank Matrix Problems 2020 Dan Garber
+ PDF Chat Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent 2021 Trung Vu
Raviv Raich
+ Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent 2021 Trung Nghia Vu
Raviv Raich
+ Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent 2021 Trung Vu
Raviv Raich
+ PDF Chat Guaranteed Matrix Completion via Nonconvex Factorization 2015 Ruoyu Sun
Zhi‐Quan Luo
+ PDF Chat Scaled stochastic gradient descent for low-rank matrix completion 2016 Bamdev Mishra
Rodolphe Sepulchre
+ Scaled stochastic gradient descent for low-rank matrix completion 2016 Bamdev Mishra
Rodolphe Sepulchre
+ Scaled stochastic gradient descent for low-rank matrix completion 2016 Bamdev Mishra
Rodolphe Sepulchre
+ Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent 2016 Chi Jin
Sham M. Kakade
Praneeth Netrapalli
+ Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees 2015 Yudong Chen
Martin J. Wainwright
+ Efficient Low-Rank Stochastic Gradient Descent Methods for Solving Semidefinite Programs 2014 Jianhui Chen
Tianbao Yang
Shenghuo Zhu
+ A Universal Variance Reduction-Based Catalyst for Nonconvex Low-Rank Matrix Recovery 2017 Lingxiao Wang
Xiao Zhang
Quanquan Gu
+ On Global Linear Convergence in Stochastic Nonconvex Optimization for Semidefinite Programming 2019 Jinshan Zeng
Ke Ma
Yuan Yao
+ Fast global convergence of gradient descent for low-rank matrix approximation 2023 Hengchao Chen
Xin Chen
Mohamad Elmasri
Qiang Sun
+ Efficient and Practical Stochastic Subgradient Descent for Nuclear Norm Regularization 2012 Haim Avron
Satyen Kale
Shiva Prasad Kasiviswanathan
Vikas Sindhwani
+ Efficient and Practical Stochastic Subgradient Descent for Nuclear Norm Regularization 2012 Haim Avron
Satyen Kale
Shiva Prasad Kasiviswanathan
Vikas Sindhwani
+ Linear Convergence of Stochastic Iterative Greedy Algorithms with Sparse Constraints 2014 Nam Nguyen
Deanna Needell
Tina Woolf
+ Fast Stochastic Algorithms for Low-rank and Nonsmooth Matrix Problems 2018 Dan Garber
Atara Kaplan
+ Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition 2022 Michał Dereziński
Elizaveta Rebrova

Cited by (69)

Action Title Year Authors
+ A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality 2017 Songtao Lu
Mingyi Hong
Zhengdao Wang
+ Convergence of Stochastic Gradient Descent for PCA 2015 Ohad Shamir
+ Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm 2016 Prateek Jain
Chi Jin
Sham M. Kakade
Praneeth Netrapalli
Aaron Sidford
+ History PCA: A New Algorithm for Streaming PCA 2018 Puyudi Yang
Cho‐Jui Hsieh
Jane-Ling Wang
+ On Global Linear Convergence in Stochastic Nonconvex Optimization for Semidefinite Programming 2019 Jinshan Zeng
Ke Ma
Yuan Yao
+ Bootstrapping the error of Oja's Algorithm 2021 Robert Lunde
Purnamrita Sarkar
Rachel Ward
+ Parallel SGD: When does averaging help? 2016 Jian Zhang
Christopher De
Ioannis Mitliagkas
Christopher Ré
+ The local convexity of solving systems of quadratic equations 2015 Chris D. White
Sujay Sanghavi
Rachel Ward
+ Streaming k-PCA: Efficient guarantees for Oja's algorithm, beyond rank-one updates 2021 De Huang
Jonathan Niles‐Weed
Rachel Ward
+ Concentration inequalities for random matrix products 2020 Amelia Henriksen
Rachel Ward
+ Concentration inequalities for random matrix products 2019 Amelia Henriksen
Rachel Ward
+ Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm 2016 Prateek Jain
Chi Jin
Sham M. Kakade
Praneeth Netrapalli
Aaron Sidford
+ Convergence of Stochastic Gradient Descent for PCA 2015 Ohad Shamir
+ PDF Chat AgFlow: fast model selection of penalized PCA via implicit regularization effects of gradient flow 2021 Haiyan Jiang
Haoyi Xiong
Dongrui Wu
Ji Liu
Dejing Dou
+ Guaranteed Matrix Completion via Non-Convex Factorization 2016 Ruoyu Sun
Zhi‐Quan Luo
+ First-Order Methods for Fast Feasibility Pursuit of Non-convex QCQPs 2017 Aritra Konar
Nicholas D. Sidiropoulos
+ PDF Chat Guarantees of riemannian optimization for low rank matrix completion 2020 Ke Wei
Jian‐Feng Cai
Tony F. Chan
Shingyu Leung
+ When Are Nonconvex Optimization Problems Not Scary 2016 Ju Sun
+ Global Optimality of Local Search for Low Rank Matrix Recovery 2016 Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
+ PDF Chat A nonconvex splitting method for symmetric nonnegative matrix factorization: Convergence analysis and optimality 2017 Songtao Lu
Mingyi Hong
Zhengdao Wang
+ PDF Chat The non-convex geometry of low-rank matrix optimization 2018 Qiuwei Li
Zhihui Zhu
Gongguo Tang
+ PDF Chat Near-optimal stochastic approximation for online principal component estimation 2017 Chris Junchi Li
Mengdi Wang
Han Liu
Tong Zhang
+ Guarantees of Riemannian Optimization for Low Rank Matrix Completion 2016 Ke Wei
Jian‐Feng Cai
Tony F. Chan
Shingyu Leung
+ An Improved Gap-Dependency Analysis of the Noisy Power Method 2016 Maria-Florina Balcan
Simon S. Du
Yining Wang
Adams Wei Yu
+ PDF Chat Learning Stochastic Optimal Policies via Gradient Descent 2021 Stefano Massaroli
Michael Poli
Stefano Peluchetti
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
+ Jo-DPMF: Differentially private matrix factorization learning through joint optimization 2018 Feng Zhang
Victor E. Lee
Kim‐Kwang Raymond Choo
+ Rank-one matrix estimation: analytic time evolution of gradient descent dynamics 2021 Antoine Bodin
Nicolas Macris
+ Low-rank solutions of linear matrix equations via procrustes flow 2016 Stephen Tu
Ross Boczar
Max Simchowitz
Mahdi Soltanolkotabi
Benjamin Recht
+ Low-rank Solutions of Linear Matrix Equations via Procrustes Flow 2015 Stephen Tu
Ross Boczar
Max Simchowitz
Mahdi Soltanolkotabi
Benjamin Recht
+ Riemannian Perspective on Matrix Factorization. 2021 Kwangjun Ahn
Felipe Suárez
+ Structured Signal Recovery From Quadratic Measurements: Breaking Sample Complexity Barriers via Nonconvex Optimization 2019 Mahdi Soltanolkotabi
+ Grassmannian Optimization for Online Tensor Completion and Tracking With the t-SVD 2022 Kyle Gilman
Davoud Ataee Tarzanagh
Laura Balzano
+ Global optimality of local search for low rank matrix recovery 2016 Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
+ PDF Chat Lock-Free Optimization for Non-Convex Problems 2017 Shen-Yi Zhao
Gong-Duo Zhang
Wu-Jun Li
+ PDF Chat A Geometric Analysis of Phase Retrieval 2017 Ju Sun
Qing Qu
John Wright
+ Streaming PCA and Subspace Tracking: The Missing Data Case 2018 Laura Balzano
Yuejie Chi
Yue M. Lu
+ A Formal Framework For Probabilistic Unclean Databases 2018 Christopher De
Ihab F. Ilyas
Benny Kimelfeld
Christopher Ré
Theodoros Rekatsinas
+ PDF Chat Convolutional Phase Retrieval via Gradient Descent 2019 Qing Qu
Yuqian Zhang
Yonina C. Eldar
John Wright
+ Scatterbrain: Unifying Sparse and Low-rank Attention Approximation 2021 Beidi Chen
Tri Dao
Eric Winsor
Zhao Song
Atri Rudra
Christopher Ré
+ PDF Chat Taming Convergence for Asynchronous Stochastic Gradient Descent with Unbounded Delay in Non-Convex Learning 2020 Xin Zhang
Jia Liu
Zhengyuan Zhu

Citing (26)

Action Title Year Authors
+ Optimization Algorithms on Matrix Manifolds 2007 P.-A. Absil
Robert Mahony
Rodolphe Sepulchre
+ PDF Chat Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming 1995 Michel X. Goemans
David P. Williamson
+ PDF Chat Low-Rank Optimization with Trace Norm Penalty 2013 Bamdev Mishra
Gilles Meyer
Francis Bach
Rodolphe Sepulchre
+ PDF Chat Counting Processes and Survival Analysis. 1992 Dorota M. Dabrowska
Thomas R. Fleming
David P. Harrington
+ PDF Chat Parallel stochastic gradient algorithms for large-scale matrix completion 2013 Benjamin Recht
Christopher Ré
+ PDF Chat Low-Rank Optimization on the Cone of Positive Semidefinite Matrices 2010 Michel Journée
Francis Bach
Pierre-Antoine Absil
Rodolphe Sepulchre
+ Local Minima and Convergence in Low-Rank Semidefinite Programming 2004 Samuel Burer
Renato D. C. Monteiro
+ A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization 2003 Samuel Burer
Renato D. C. Monteiro
+ The Noisy Power Method: A Meta Algorithm with Applications 2014 Moritz Hardt
Eric Price
+ PDF Chat Stochastic optimization for PCA and PLS 2012 Raman Arora
Andrew Cotter
Karen Livescu
Nathan Srebro
+ Guaranteed Matrix Completion via Non-Convex Factorization 2016 Ruoyu Sun
Zhi‐Quan Luo
+ Fast Exact Matrix Completion with Finite Samples 2015 Prateek Jain
Praneeth Netrapalli
+ The Fast Convergence of Incremental PCA 2015 Akshay Balsubramani
Sanjoy Dasgupta
Yoav Freund
+ PDF Chat Understanding Alternating Minimization for Matrix Completion 2014 Moritz Hardt
+ Riemannian geometry 1992 Manfredo do Carmo
+ PDF Chat Solving ptychography with a convex relaxation 2015 Roarke Horstmeyer
Richard Y. Chen
Xiaoze Ou
Brendan Ames
Joel A. Tropp
Changhuei Yang
+ PDF Chat Low-rank matrix completion using alternating minimization 2013 Prateek Jain
Praneeth Netrapalli
Sujay Sanghavi
+ Phase Retrieval using Alternating Minimization 2013 Praneeth Netrapalli
Prateek Jain
Sujay Sanghavi
+ Stochastic Optimization of PCA with Capped MSG 2013 Raman Arora
Andy Cotter
Nati Srebro
+ PDF Chat Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns 2013 Emmanuel J. Candès
Xiaodong Li
+ A Stochastic PCA Algorithm with an Exponential Convergence Rate. 2014 Ohad Shamir
+ Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization 2011 Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
+ HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent 2011 Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
+ A Reliable Effective Terascale Linear Learning System 2011 Alekh Agarwal
Olivier Chapelle
Miroslav Dudı́k
John Langford
+ PDF Chat Online identification and tracking of subspaces from highly incomplete information 2010 Laura Balzano
Robert D. Nowak
Benjamin Recht
+ PDF Chat Phase Retrieval via Wirtinger Flow: Theory and Algorithms 2015 Emmanuel J. Candès
Xiaodong Li
Mahdi Soltanolkotabi