Type: Book-Chapter
Publication Date: 2014-05-09
Citations: 12
DOI: https://doi.org/10.1515/9783110298161.1037
For infinitely many primes $p=4k+1$ we give a slightly improved upper bound for the maximal cardinality of a set $B\subset \ZZ_p$ such that the difference set $B-B$ contains only quadratic residues. Namely, instead of the trivial bound $|B|\leq \sqrt{p}$ we prove $|B|\leq \sqrt{p}-1$, under suitable conditions on $p$. The new bound is valid for approximately three quarters of the primes $p=4k+1$.