The list chromatic number of graphs with small clique number

Type: Article

Publication Date: 2018-07-13

Citations: 74

DOI: https://doi.org/10.1016/j.jctb.2018.06.007

Locations

  • Journal of Combinatorial Theory Series B - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The list chromatic number of graphs with small clique number 2017 Michael Molloy
+ The list chromatic number of graphs with small clique number 2017 Michael Molloy
+ PDF Chat Bipartite graphs are $(\frac{4}{5}-\varepsilon) \frac{\Delta}{\log \Delta}$-choosable 2024 Peter Bradshaw
Bojan Mohar
Ladislav Stacho
+ A note on list‐colorings 1989 Amanda G. Chetwynd
Roland HĂ€ggkvist
+ Subgraphs of large connectivity and chromatic number 2020 AntĂłnio GirĂŁo
Bhargav Narayanan
+ PDF Chat List-Coloring Claw-Free Graphs with $\Delta-1$ Colors 2017 Daniel W. Cranston
Landon Rabern
+ Bounding $\chi$ by a fraction of $\Delta$ for graphs without large cliques 2018 Marthe Bonamy
Tom Kelly
Peter Nelson
Luke Postle
+ List-Coloring Claw-Free Graphs with Small Clique Number 2012 Louis Esperet
AndrĂĄs GyĂĄrfĂĄs
Frédéric Maffray
+ Bounding $χ$ by a fraction of $Δ$ for graphs without large cliques 2018 Marthe Bonamy
Tom Kelly
Peter S. Nelson
Luke Postle
+ PDF Chat Subgraphs of large connectivity and chromatic number 2022 AntĂłnio GirĂŁo
Bhargav Narayanan
+ Dense uniform hypergraphs have high list chromatic number 2011 Noga Alon
Alexandr Kostochka
+ List Coloring Triangle-Free Hypergraphs 2013 Jeff Cooper
Dhruv Mubayi
+ List Coloring Triangle-Free Hypergraphs 2013 Jeff Cooper
Dhruv Mubayi
+ List colouring of graphs with at most $\big(2-o(1)\big)\chi$ vertices 2003 Bruce Reed
Benny Sudakov
+ Bipartite induced density in triangle-free graphs 2018 Wouter Cames van Batenburg
RĂ©mi de Joannis de Verclos
Ross J. Kang
François Pirot
+ Bipartite induced density in triangle-free graphs 2018 Wouter Cames van Batenburg
RĂ©mi de Joannis de Verclos
Ross J. Kang
François Pirot
+ Sufficient sparseness conditions for G^2 to be (Δ+1)-choosable, when Δ\ge5 2013 Daniel W. Cranston
Riste Ć krekovski
+ PDF Chat On the List Coloring Version of Reed's Conjecture 2017 Michelle Delcourt
Luke Postle
+ The chromatic number of triangle-free graphs 1972 Hudson V. Kronk
+ A General Upper Bound on the List Chromatic Number of Locally Sparse Graphs 2002 Van H. Vu