Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity

Type: Article

Publication Date: 2015-12-17

Citations: 52

DOI: https://doi.org/10.1515/anona-2015-0123

Abstract

Abstract We study the following nonlinear Choquard equation: <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mi>Δ</m:mi> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>V</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>x</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mo>|</m:mo> <m:mi>x</m:mi> <m:mo>|</m:mo> </m:mrow> <m:mi>μ</m:mi> </m:msup> </m:mfrac> <m:mo>∗</m:mo> <m:mi>F</m:mi> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>u</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>u</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo> </m:mo> <m:mrow> <m:mtext>in </m:mtext> <m:mo>⁢</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> $-\Delta u+V(x)u=\biggl{(}\frac{1}{|x|^{\mu}}\ast F(u)\biggr{)}f(u)\quad\text{% in }\mathbb{R}^{N},$ where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>μ</m:mi> <m:mo>&lt;</m:mo> <m:mi>N</m:mi> </m:mrow> </m:math> ${0&lt;\mu&lt;N}$ , <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> ${N\geq 3}$ , V is a continuous real function and F is the primitive function of f . Under some suitable assumptions on the potential V , which include the case <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mi>V</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>∞</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> ${V(\infty)=0}$ , that is, <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mi>V</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>x</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>→</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> ${V(x)\to 0}$ as <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:mo>|</m:mo> <m:mi>x</m:mi> <m:mo>|</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>+</m:mo> <m:mi>∞</m:mi> </m:mrow> </m:mrow> </m:math> ${|x|\to+\infty}$ , we prove the existence of a nontrivial solution for the above equation by the penalization method.

Locations

  • Advances in Nonlinear Analysis - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ PDF Chat Ground state solutions and infinitely many solutions for a nonlinear Choquard equation 2021 Tianfang Wang
Wen Zhang
+ PDF Chat Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential 2021 Jing Zhang
Qiongfen Zhang
+ Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity 2015 Claudianor O. Alves
Giovany M. Figueiredo
Minbo Yang
+ PDF Chat Existence of Groundstates for a Class of Nonlinear Choquard Equations in the Plane 2017 Luca Battaglia
Jean Van Schaftingen
+ Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity 2021 Liuyang Shao
Yingmin Wang
+ PDF Chat Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities 2022 Silvia Cingolani
Marco Gallo
Kazunaga Tanaka
+ Existence of Solutions for the Nonlinear Choquard Equation with Nonsmooth Potential 2024 Ziqing Yuan
+ Existence and Concentration of Solutions for Choquard Equations with Steep Potential Well and Doubly Critical Exponents 2020 Yongyong Li
Gui-Dong Li
Chun‐Lei Tang
+ PDF Chat Infinitely many non-radial solutions for a Choquard equation 2022 Fashun Gao
Minbo Yang
+ Existence of Solutions for a Class of Quasilinear Choquard Equations with Potential Vanishing at Infinity 2023 Die Hu
Xianhua Tang
+ PDF Chat Existence of Multiple Positive Solutions for Choquard Equation with Perturbation 2015 Tao Xie
Lu Xiao
Jun Wang
+ PDF Chat Existence of Multispike Positive Solutions for a Nonlocal Problem in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> 2020 Jing Yang
Qiuxiang Bian
Na Zhao
+ Ground state solutions for a class of Choquard equations with potential vanishing at infinity 2018 Sitong Chen
Shuai Yuan
+ Existence of positive solutions to the nonlinear Choquard equation with competing potentials 2018 Jun Wang
Mengmeng Qu
Lu Xiao
+ Choquard Equations with Mixed Potential 2015 Marco A. S. Souto
Romildo N. de Lima
+ Existence of solutions for a class of quasilinear Schrödinger equations with Choquard-type nonlinearity 2024 Zifei Shen
Ning Yang
+ PDF Chat Limit profiles and uniqueness of ground states to the nonlinear Choquard equations 2018 Jinmyoung Seok
+ Existence and Concentration of Solutions for a Nonlinear Choquard Equation 2014 Dengfeng Lü
+ PDF Chat Semi-classical Analysis Around Local Maxima and Saddle Points for Degenerate Nonlinear Choquard Equations 2023 Silvia Cingolani
Kazunaga Tanaka
+ Normalized solutions for the Choquard equations with critical nonlinearities 2024 Qian Gao
Xiaoming He