Green's function and infinite-time bubbling in the critical nonlinear heat equation

Type: Article

Publication Date: 2019-10-01

Citations: 49

DOI: https://doi.org/10.4171/jems/922

Abstract

Let \Omega be a smooth bounded domain in \mathbb R^n , n\ge 5 . We consider the classical semilinear heat equation at the critical Sobolev exponent u_t = \Delta u + u^{\frac{n+2}{n-2}} \quad \mathrm {in} \: \Omega\times (0,\infty), \quad u =0 \quad \mathrm {on} \: \partial\Omega\times (0,\infty). Let G(x,y) be the Dirichlet Green's function of -\Delta in \Omega and H(x,y) its regular part. Let q_j\in \Omega , j=1,\ldots,k , be points such that the matrix \left [ \begin{matrix} H(q_1, q_1) & -G(q_1,q_2) &\cdots & -G(q_1, q_k) \\ -G(q_1,q_2) & H(q_2,q_2) & -G(q_2,q_3) \cdots & -G(q_3,q_k) \\ \vdots & & \ddots& \vdots \\ -G(q_1,q_k) &\cdots& -G(q_{k-1}, q_k) & H(q_k,q_k) \end{matrix} \right ] is positive definite. For any k\ge 1 such points indeed exist. We prove the existence of a positive smooth solution u(x,t) which blows-up by bubbling in infinite time near those points. More precisely, for large time t , u takes the approximate form u(x,t) \approx \sum_{j=1}^k \alpha_n \left ( \frac { \mu_j(t)} { \mu_j(t)^2 + |x-\xi_j(t)|^2 } \right )^{\frac {n-2}2}. Here \xi_j(t) \to q_j and 0<\mu_j(t) \to 0 , as t \to \infty . We find that \mu_j(t) \sim t^{-\frac 1{n-4}} as t\to +\infty .

Locations

  • arXiv (Cornell University) - View - PDF
  • Pure (University of Bath) - View - PDF
  • Journal of the European Mathematical Society - View

Similar Works

Action Title Year Authors
+ Green's function and infinite-time bubbling in the critical nonlinear heat equation 2016 Carmen CortĂĄzar
Manuel del Pino
Monica Musso
+ Green's function and infinite-time bubbling in the critical nonlinear heat equation 2016 Carmen CortĂĄzar
Manuel del Pino
Monica Musso
+ Refined blowup analysis and nonexistence of Type II blowups for an energy critical nonlinear heat equation 2021 Kelei Wang
Juncheng Wei
+ PDF Chat Localization of bubbling for high order nonlinear equations 2024 Frédéric Robert
+ PDF Chat Super-critical boundary bubbling in a semilinear Neumann problem 2004 Manuel del Pino
Monica Musso
Angela Pistoia
+ PDF Chat Type Ⅱ finite time blow-up for the energy critical heat equation in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^4 $\end{document}</tex-math></inline-formula> 2019 Manuel del Pino
Monica Musso
Juncheng Wei
Yifu Zhou
+ PDF Chat Bubbling on boundary submanifolds for a semilinear Neumann problem near high critical exponents 2015 Monica Musso
Fethi Mahmoudi
Shengbing Deng
+ Bubbling phenomenon for semilinear Neumann elliptic equations of critical exponential growth 2023 Lu Chen
Guozhen Lu
Caifeng Zhang
+ Sign-changing blowing-up solutions for the critical nonlinear heat equation 2018 Manuel del Pino
Monica Musso
Juncheng Wei
Youquan Zheng
+ Non-linear heat equation on the Hyperbolic space: Global existence and finite-time Blow-up 2022 Debdip Ganguly
Debabrata Karmakar
Saikat Mazumdar
+ PDF Chat Non-linear heat equation on the Hyperbolic space: Global existence and finite-time Blow-up 2023 Debdip Ganguly
Debabrata Karmakar
Saikat Mazumdar
+ PDF Chat Entire and ancient solutions of a supercritical semilinear heat equation 2020 Peter Poláčik
Pavol QuĂ­ttner
+ Chapter 3 Bubbling in nonlinear elliptic problems near criticality 2006 Manuel del Pino
Monica Musso
+ Infinite time blow-up for the fractional heat equation with critical exponent 2018 Monica Musso
Yannick Sire
Juncheng Wei
Zhijun Zheng
Yifu Zhou
+ Infinite time blow-up for the three dimensional energy critical heat equation in bounded domains 2023 Giacomo Ageno
Manuel del Pino
+ PDF Chat Localized Sequential Bubbling for the Radial Energy Critical Semilinear Heat Equation 2023 Andrew Lawrie
+ PDF Chat Breakdown of $ C^{\infty} $-smoothing effects of solutions to the semilinear heat equation in the whole space 2024 Taiki Takeuchi
+ PDF Chat N- Laplacian problems with critical double exponential nonlinearities 2020 Shengbing Deng
Tingxi Hu
Chun‐Lei Tang
+ Behavior rigidity near non-isolated blow-up points for the semilinear heat equation 2021 Frank Merle
Hatem Zaag
+ PDF Chat Infinite time blow-up for the fractional heat equation with critical exponent 2018 Monica Musso
Yannick Sire
Juncheng Wei
Youquan Zheng
Yifu Zhou

Works That Cite This (48)

Action Title Year Authors
+ Construction of multi-bubble solutions for the energy-critical wave equation in dimension 5 2020 Jacek Jendrej
Yvan Martel
+ Sharp equivalent for the blowup profile to the gradient of a solution to the semilinear heat equation 2021 Giao Ky Duong
Tej‐Eddine Ghoul
Hatem Zaag
+ PDF Chat Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System 2024 Juan Dávila
Manuel del Pino
Jean Dolbeault
Monica Musso
Juncheng Wei
+ Finite time blow-up for the fractional critical heat equation in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e20" altimg="si13.gif"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2019 Guoyuan Chen
Juncheng Wei
Yifu Zhou
+ PDF Chat Leapfrogging vortex rings for the three‐dimensional incompressible Euler equations 2024 Juan Dávila
Manuel del Pino
Monica Musso
Juncheng Wei
+ PDF Chat Sign-changing blowing-up solutions for the critical nonlinear heat equation 2019 Manuel del Pino
Monica Musso
Juncheng Wei
Youquan Zheng
+ Long-time asymptotics of the n-dimensional fractional critical heat equation 2024 Zhong Tan
Yi Yang
+ PDF Chat Construction of Multibubble Solutions for the Critical GKDV Equation 2018 Vianney Combet
Yvan Martel
+ PDF Chat Bubbling and extinction for some fast diffusion equations in bounded domains 2023 Tianling Jin
Jingang Xiong
+ Existence and stability of infinite time blow-up in the Keller-Segel system 2019 Juan DĂĄvila
Manuel del Pino
Jean Dolbeault
Monica Musso
Juncheng Wei