GLOBAL WELL-POSEDNESS OF THE 1D DIRAC–KLEIN–GORDON SYSTEM IN SOBOLEV SPACES OF NEGATIVE INDEX

Type: Article

Publication Date: 2009-09-01

Citations: 16

DOI: https://doi.org/10.1142/s0219891609001952

Abstract

We prove that the Cauchy problem for the Dirac–Klein–Gordon system of equations in 1D is globally well-posed in a range of Sobolev spaces of negative index for the Dirac spinor and positive index for the scalar field. The main ingredient in the proof is the theory of "almost conservation law" and "I-method" introduced by Colliander, Keel, Staffilani, Takaoka, and Tao. Our proof also relies on the null structure in the system, and bilinear space–time estimates of Klainerman–Machedon type.

Locations

  • Journal of Hyperbolic Differential Equations - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Global Well-posedness of the 1D Dirac-Klein-Gordon system in Sobolev spaces of negative index 2008 Achenef Tesfahun
+ BILINEAR ESTIMATES AND APPLICATIONS TO GLOBAL WELL-POSEDNESS FOR THE DIRAC–KLEIN–GORDON EQUATION ON ℝ<sup>1+1</sup> 2013 Timothy Candy
+ Global well-posedness below the charge norm for the Dirac-Klein-Gordon system in one space dimension 2006 Sigmund Selberg
+ PDF Chat Sharp ill-posedness of the Dirac–Klein–Gordon system in one dimension 2019 Shuji Machihara
Mamoru Okamoto
+ PDF Chat Well-posedness for nonlinear Dirac equations in one dimension 2010 Shuji Machihara
Kenji Nakanishi
Kotaro Tsugawa
+ PDF Chat Global Well-posedness Below the Charge Norm for the Dirac-Klein-Gordon System in One Space Dimension 2007 Sigmund Selberg
+ Low Regularity local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon system 2007 Achenef Tesfahun
+ The Cauchy Problem for the Klein–Gordon–Schrödinger System in Low Dimensions Below the Energy Space 2005 Nikolaos Tzirakis
+ Null structure and almost optimal local well-posedness of the Dirac-Klein-Gordon system 2005 Piero DʼAncona
Damiano Foschi
Sigmund Selberg
+ Sharp ill-posedness of the Dirac-Klein-Gordon system in one dimension 2018 Shuji Machihara
Mamoru Okamoto
+ Low regularity and local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon system 2007 Achenef Tesfahun
+ Sharp ill-posedness for the Maxwell-Dirac equations in one space dimension 2019 Sigmund Selberg
Achenef Tesfahun
+ PDF Chat Sharp Global Well-Posedness for a Higher Order Schrodinger Equation 2005 Xavier Carvajal
+ PDF Chat Global Well-Posedness of the Derivative Nonlinear Schroedinger Equations on T 2010 Yin Yin Su Win
+ Survey on global existence in the nonlinear Dirac equations in one spatial dimension (Harmonic Analysis and Nonlinear Partial Differential Equations) 2011 Dmitry E. Pelinovsky
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ PDF Chat LOCAL WELL-POSEDNESS BELOW THE CHARGE NORM FOR THE DIRAC–KLEIN–GORDON SYSTEM IN TWO SPACE DIMENSIONS 2007 Piero DʼAncona
Damiano Foschi
Sigmund Selberg
+ PDF Chat Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system 2007 Piero DʼAncona
Damiano Foschi
Sigmund Selberg
+ PDF Chat Well-posedness of the Cauchy problem for the Maxwell–Dirac system in one space dimension 2019 Mamoru Okamoto
+ Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions 2006 Piero DʼAncona
Damiano Foschi
Sigmund Selberg