Non-Existence of Solutions for the Periodic Cubic NLS below ${L}^{{2}}$

Type: Article

Publication Date: 2016-10-26

Citations: 37

DOI: https://doi.org/10.1093/imrn/rnw271

Abstract

We prove non-existence of solutions for the cubic nonlinear Schrödinger equation (NLS) on the circle if initial data belong to |$H^s(\mathbb{T}) \setminus L^2(\mathbb{T})$| for some |$s \in (-\frac18, 0)$|⁠. The proof is based on establishing an a priori bound on solutions to a renormalized cubic NLS in negative Sobolev spaces via the short-time Fourier restriction norm method.

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF
  • Edinburgh Research Explorer (University of Edinburgh) - View - PDF

Similar Works

Action Title Year Authors
+ Non-existence of solutions for the periodic cubic NLS below $L^2$ 2015 Zihua Guo
Tadahiro Oh
+ PDF Chat GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES 2018 Tadahiro Oh
Yuzhao Wang
+ Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces 2017 Tadahiro Oh
Yuzhao Wang
+ On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle 2015 Tadahiro Oh
Yuzhao Wang
+ On the ill-posedness of the cubic nonlinear Schr\"odinger equation on the circle 2015 Tadahiro Oh
Yuzhao Wang
+ Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS 2011 Zihua Guo
Soonsik Kwon
Tadahiro Oh
+ A remark on norm inflation with general initial data for the cubic nonlinear Schr\"odinger equations in negative Sobolev spaces 2015 Tadahiro Oh
+ PDF Chat Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces 2021 Tadahiro Oh
Yuzhao Wang
+ PDF Chat A Remark on Norm Inflation with General Initial Data for the Cubic Nonlinear Schrödinger Equations in Negative Sobolev Spaces 2017 Tadahiro Oh
+ Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces 2018 Tadahiro Oh
Yuzhao Wang
+ A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces 2015 Tadahiro Oh
+ PDF Chat Ill-Posedness of the Cubic Nonlinear Half-Wave Equation and Other Fractional NLS on the Real Line 2016 Antoine Choffrut
Oana Pocovnicu
+ Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line 2016 Antoine Choffrut
Oana Pocovnicu
+ Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line 2016 Antoine Choffrut
Oana Pocovnicu
+ Global well-posedness of one-dimensional cubic fractional nonlinear Schrödinger equations in negative Sobolev spaces 2023 Enguerrand Brun
Guopeng Li
Ruoyuan Liu
Younes Zine
+ PDF Chat Knocking Out Teeth in One-Dimensional Periodic Nonlinear Schrödinger Equation 2019 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+ PDF Chat Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation 2020 Kihoon Seong
+ PDF Chat Energy and local energy bounds for the 1-d cubic NLS equation in \( H^{- \frac{1}{4}} \) 2012 Herbert Koch
Daniel Tataru
+ Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation 2019 Kihoon Seong
+ PDF Chat Norm inflation for a higher-order nonlinear Schr\"odinger equation with a derivative on the circle 2024 Toshiki Kondo
Mamoru Okamoto

Works That Cite This (37)

Action Title Year Authors
+ PDF Chat Global well-posedness of partially periodic KP-I equation in the energy space and application 2018 Tristan Robert
+ PDF Chat Loomis-Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation 2020 S. Kinoshita
Robert Schippa
+ PDF Chat Low regularity well-posedness of KP-I equations: The three-dimensional case 2023 Sebastian Herr
Akansha Sanwal
Robert Schippa
+ A remark on randomization of a general function of negative regularity 2024 Tadahiro Oh
Mamoru Okamoto
Oana Pocovnicu
Nikolay Tzvetkov
+ PDF Chat Stochastic nonlinear Schrödinger equations on tori 2018 Kelvin Cheung
Răzvan Moşincat
+ Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces 2017 Tadahiro Oh
Yuzhao Wang
+ PDF Chat Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation 2024 Tadahiro Oh
Mamoru Okamoto
Nikolay Tzvetkov
+ PDF Chat Unconditional uniqueness of higher order nonlinear Schrödinger equations 2021 Friedrich Klaus
Peer Christian Kunstmann
Nikolaos Pattakos
+ PDF Chat On a priori estimates and existence of periodic solutions to the modified Benjamin-Ono equation below <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">T</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2021 Robert Schippa
+ PDF Chat Well-posedness for a two-dimensional dispersive model arising from capillary-gravity flows 2021 Oscar Riaño