Empirical Risk Minimization Under Fairness Constraints

Type: Article

Publication Date: 2018-12-08

Citations: 143

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Empirical Risk Minimization under Fairness Constraints 2018 Michele Donini
Luca Oneto
Shai Ben-David
John Shawe‐Taylor
Massimiliano Pontil
+ Empirical Risk Minimization under Fairness Constraints 2018 Michele Donini
Luca Oneto
Shai Ben-David
John Shawe‐Taylor
Massimiliano Pontil
+ General Fair Empirical Risk Minimization 2019 Luca Oneto
Michele Donini
Massimiliano Pontil
+ PDF Chat General Fair Empirical Risk Minimization 2020 Luca Oneto
Michele Donini
Massimiliano Pontil
+ PDF Chat Kernel dependence regularizers and Gaussian processes with applications to algorithmic fairness 2022 Zhu Li
Adrián Pérez-Suay
Gustau Camps‐Valls
Dino Sejdinović
+ The cost of fairness in classification 2017 Aditya Krishna Menon
Robert C. Williamson
+ Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness 2019 Zhu Li
Adrián Pérez-Suay
Gustau Camps‐Valls
Dino Sejdinović
+ A Stochastic Optimization Framework for Fair Risk Minimization 2021 Andrew M. Lowy
Sina Baharlouei
Rakesh Pavan
Meisam Razaviyayn
Ahmad Beirami
+ Oblivious Data for Fairness with Kernels 2020 Steffen Grünewälder
Azadeh Khaleghi
+ PDF Chat Fairness, Accuracy, and Unreliable Data 2024 Kevin Stangl
+ PDF Chat RMF: A Risk Measurement Framework for Machine Learning Models 2024 Jan Schröder
Jakub Breier
+ Empirical Bayes Fairness in Linear Regression 2024 Emilio Carrizosa
Rafael Jiménez-Llamas
Pepa Ramírez‐Cobo
+ Empirical Risk Minimization 2022 Alexander Jung
+ A Convex Framework for Fair Regression 2017 Richard A. Berk
Hoda Heidari
Shahin Jabbari
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
+ Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey with Causality Perspectives 2023 Haoyang Liu
Maheep Chaudhary
Haohan Wang
+ Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes 2022 Tennison Liu
Alex J. Chan
Boris van Breugel
Mihaela van der Schaar
+ PDF Chat Statistical learning for constrained functional parameters in infinite-dimensional models with applications in fair machine learning 2024 Razieh Nabi
Nima S. Hejazi
Mark J. van der Laan
David Benkeser
+ Fast Fair Regression via Efficient Approximations of Mutual Information 2020 Daniel Steinberg
Alistair Reid
Simon O’Callaghan
Finnian Lattimore
Lachlan McCalman
Tibério S. Caetano
+ Tilted Empirical Risk Minimization 2020 Tian Li
Ahmad Beirami
Maziar Sanjabi
Virginia Smith
+ PDF Chat Non-Discriminatory Machine Learning through Convex Fairness Criteria 2018 Naman Goel
Mohammad Yaghini
Boi Faltings

Works Cited by This (0)

Action Title Year Authors