COUNTING THE NUMBER OF SOLUTIONS TO THE ERDŐS–STRAUS EQUATION ON UNIT FRACTIONS

Type: Article

Publication Date: 2013-02-01

Citations: 38

DOI: https://doi.org/10.1017/s1446788712000468

Abstract

Abstract For any positive integer $n$ , let $f(n)$ denote the number of solutions to the Diophantine equation $$\begin{eqnarray*}\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\end{eqnarray*}$$ with $x, y, z$ positive integers. The Erdős–Straus conjecture asserts that $f(n)\gt 0$ for every $n\geq 2$ . In this paper we obtain a number of upper and lower bounds for $f(n)$ or $f(p)$ for typical values of natural numbers $n$ and primes $p$ . For instance, we establish that $$\begin{eqnarray*}N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\ll \displaystyle \sum _{p\leq N}f(p)\ll N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\log \log N.\end{eqnarray*}$$ These upper and lower bounds show that a typical prime has a small number of solutions to the Erdős–Straus Diophantine equation; small, when compared with other additive problems, like Waring’s problem.

Locations

  • Journal of the Australian Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Journal of the Australian Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Counting the number of solutions to the Erdos-Straus equation on unit fractions 2011 Christian Elsholtz
Terence Tao
+ On the number of solutions to $\frac{4}{p}=\frac{1}{n_1}+\frac{1}{n_2}+\frac{1}{n_3}$ 2011 Terence Tao
+ A Study on Erdős-Straus conjecture on Diophantine equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 2021 S. Maiti
+ The simplest proof of Erdos-Straus conjecture 2021 Mohammad Arab
+ Solutions to Diophantine Equation of Erdos-Straus Conjecture 2018 Dagnachew Jenber Negash
+ The number of solutions of the Erdős-Straus Equation and sums of $k$ unit fractions 2018 Christian Elsholtz
Stefan Planitzer
+ A Study on Erd\H{o}s-Straus conjecture on Diophantine equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 2020 S. Maiti
+ A Geometric Consideration of the Erdős-Straus Conjecture 2014 Kyle Bradford
Eugen J. Ionaşcu
+ Structure and form of the solutions of the Erdos-Straus conjecture 2022 Miguel Angel Lopez
+ The $p$-adic Order of Power Sums, the Erdös-Moser Equation, and Bernoulli Numbers 2014 Jonathan Sondow
Emmanuel Tsukerman
+ The number of solutions of the Erdős-Straus Equation and sums of<i>k</i>unit fractions 2019 Christian Elsholtz
Stefan Planitzer
+ On Egyptian fractions 2010 Manuel Bello-Hernández
Manuel Benito
Emilio Fernández
+ On Egyptian fractions 2010 Manuel Bello-Hernández
Manuel Benito
Emilio Fernández
+ On the Erdos-Straus Conjecture 2010 Eugen J. Ionaşcu
Andrew Wilson
+ Solutions to Erdos-Straus Conjecture 2019 Nurlan Qasimli
+ Solutions of the problem of Erd\"os-Sierpi\'nski: $\sigma(n)=\sigma(n+1)$ 2007 Lourdes Benito
+ A remark on a conjecture of Erdős and Straus 2020 Youssef Lazar
+ Solutions of the problem of Erdös-Sierpiński: $σ(n)=σ(n+1)$ 2007 Lourdes Benito
+ PDF Chat On the unsolvability of certain equations of Erdős–Moser type 2019 Ioulia N. Baoulina
+ On a Diophantine equation of Erdős and Graham 2020 Szabolcs Tengely
Maciej Ulas
Jakub Zygadło